Advertisement

Al-Si Alloys, Minor, Major, and Impurity Elements

  • Francisco C. Robles Hernandez
  • Jose Martin Herrera Ramírez
  • Robert Mackay
Chapter

Abstract

This chapter gives an introductory description of Al-Si alloys. The intention of this chapter is to provide a brief review and understanding of these alloys including their designation, standards, and the effects of alloying additions to the alloy. The additions to the Al-Si alloy are classified as minor, major, and impurity elements or additions. Minor and major additions are defined based on the fraction or percentage added to the alloy. The impurity element (usually Fe) is present as a byproduct of recycling.

Keywords

Al-Si Alloys AA Designation ASTM Standard Alloying Elements 

References

  1. 1.
    Gruzleski, J.E., and B.M. Closset. 1990. The treatment of liquid aluminum-silicon alloys, 256. Des Plaines: American Foundrymen’s Society, Inc.Google Scholar
  2. 2.
    Campbell, J. 2003. Castings. 2nd ed., Oxford, UK: Butterworth Heinemann.Google Scholar
  3. 3.
    Bäckerud, L., G. Chai, and J. Tamminen. 1990. Solidification characteristics of aluminum alloys: Foundry alloys. Vol. 2. 1st ed., 256. Stockholm: AFS/Skan Aluminium.Google Scholar
  4. 4.
    Bäckerud, L., G. Chai, and J. Tamminen. 1990. Solidification characteristics of aluminum alloys: Wrought alloys. Vol. 1. 1st ed. Oslo: AFS/Skan Aluminium.Google Scholar
  5. 5.
    Adams, J.H. et al. 1990. ASM metals handbook Vol. 2: Properties and selection: Nonferrous alloys and special-purpose materials. Metals Park: ASM International.Google Scholar
  6. 6.
    Jorstad, J.L. 1971. The hypereutectic aluminum-silicon alloy used to cast the Vega engine block. Modern Casting 60 (4): 59–64.Google Scholar
  7. 7.
    Robles Hernandez, F.C. 2004. Improvement in functional characteristics of aluminum-silicon cast components through the utilization of a novel electromagnetic treatment of liquid melts. Ph.D Thesis, University of Windsor (Canada).Google Scholar
  8. 8.
    Gadou, R. 2001. Thermal spray coatings for cylinder liners. Shrewsbury: MPR.Google Scholar
  9. 9.
    Jorstad, J.L. 1970. Paper no. 105, 5–11. Detroit: SDCE.Google Scholar
  10. 10.
    Kolbemschmidt, A.G. 1985. 75 Years Kolbemschmidt, Brochure, 1–51.Google Scholar
  11. 11.
    Jorstad, J.L. 1986. Understanding sludge. Die Casting Engineer 30 (6): 30.Google Scholar
  12. 12.
    Norbye, J.P. 1970. Chevrolet vega 2300 engine. Automobile Engineering: 320–326.Google Scholar
  13. 13.
    Green, R.E. 1970. Die casting the Vega engine block. Die Casting Engineer 14: 12–26.Google Scholar
  14. 14.
    Jorstad, J.L. 1970. 6th SDCE international die casting congress, 1–6. Cleveland.Google Scholar
  15. 15.
    Kisielowski, C., P. Specht, S.M. Gygax, B. Barton, H.A. Calderon, J.H. Kang, and R. Cieslinski. 2015. Instrumental requirements for the detection of electron beam-induced object excitations at the single atom level in high-resolution transmission electron microscopy. Micron 68: 186–193.Google Scholar
  16. 16.
    Hernandez, F.C.R., J.H. Sokolowski, and J.D.C. Rivera. 2007. Micro-Raman analysis of the Si particles present in Al-Si hypereutectic alloys in liquid and semi-solid states. Advanced Engineering Materials 9 (1–2): 46–51.CrossRefGoogle Scholar
  17. 17.
    Robles Hernandez, F.C., and J.H. Sokolowski. 2006. Comparison among chemical and electromagnetic stirring and vibration melt treatments for Al-Si hypereutectic alloys. Journal of Alloys and Compounds 426 (1–2): 205–212.CrossRefGoogle Scholar
  18. 18.
    Robles Hernandez, F.C., and J.H. Sokolowski. 2006. Thermal analysis and microscopical characterization of Al-Si hypereutectic alloys. Journal of Alloys and Compounds 419 (1–2): 180–190.CrossRefGoogle Scholar
  19. 19.
    Robles Hernandez, F.C., and J.H. Sokolowski. 2009. Effects and on-line prediction of electromagnetic stirring on microstructure refinement of the 319 Al-Si hypoeutectic alloy. Journal of Alloys and Compounds 480 (2): 416–421.CrossRefGoogle Scholar
  20. 20.
    Robles Hernández, F.C., and J.H. Sokolowski. 2005. Identification of silicon agglomerates in quenched Al-Si hypereutectic alloys from liquid state. Advanced Engineering Materials 7 (11): 1037–1043.CrossRefGoogle Scholar
  21. 21.
    Robles Hernandez, F.C., J.H. Sokolowski, and J.J. De Cruz Rivera. 2007. Micro-Raman analysis of the Si particles present in Al-Si hypereutectic alloys in liquid and semi-solid states. Advanced Engineering Materials 9 (1–2): 46–51.CrossRefGoogle Scholar
  22. 22.
    Riahi, A.R., and A.T. Alpas. 2006. Fracture of silicon-rich particles during sliding contact of Al–Si alloys. Materials Science and Engineering A 441 (1–2): 326–330.CrossRefGoogle Scholar
  23. 23.
    Li, J., et al. 2006. FIB and TEM characterization of subsurfaces of an Al–Si alloy (A390) subjected to sliding wear. Materials Science and Engineering A 421 (1–2): 317–327.CrossRefGoogle Scholar
  24. 24.
    Riahi, A.R., T. Perry, and A.T. Alpas. 2003. Scuffing resistances of Al–Si alloys: Effects of etching condition, surface roughness and particle morphology. Materials Science and Engineering A 343 (1–2): 76–81.CrossRefGoogle Scholar
  25. 25.
    Elmadagli, M., T. Perry, and A.T. Alpas. 2007. A parametric study of the relationship between microstructure and wear resistance of Al–Si alloys. Wear 262 (1–2): 79–92.CrossRefGoogle Scholar
  26. 26.
    Elmadagli, M., and A.T. Alpas. 2006. Sliding wear of an Al–18.5 wt.% Si alloy tested in an argon atmosphere and against DLC coated counterfaces. Wear 261 (7–8): 823–834.CrossRefGoogle Scholar
  27. 27.
    Chen, M., T. Perry, and A.T. Alpas. 2007. Ultra-mild wear in eutectic Al–Si alloys. Wear 263 (1–6): 552–561.CrossRefGoogle Scholar
  28. 28.
    Elmadagli, M., and A.T. Alpas. 2006. Progression of wear in the mild wear regime of an Al-18.5% Si (A390) alloy. Wear 261 (3–4): 367–381.CrossRefGoogle Scholar
  29. 29.
    Gustafsson, G., T. Thorvaldsson, and G.L. Dunlop. 1986. The influence of Fe and Cr on the microstructure of cast Al-Si-Mg alloys. Metallurgical Transactions A 17 (1): 45–52.CrossRefGoogle Scholar
  30. 30.
    Davis, J.R. 1993. ASM specialty handbook: Aluminum and aluminum alloys, 784. Materials Park: ASM International.Google Scholar
  31. 31.
    Heusler, L., F.J. Feijus, and M.O. Otte. 2001. Alloy and casting process optimization for engine block application. AFS Transactions 109: 443–451.Google Scholar
  32. 32.
    Li, B.Q. 1998. Solidification processing of materials in magnetic fields. JOM 50 (2): 1–10.Google Scholar
  33. 33.
    Król, J. 1997. The precipitation strengthening of directionally solidified Al Si Cu alloys. Materials Science and Engineering A 234–236: 169–172.CrossRefGoogle Scholar
  34. 34.
    Mackay, R. and J.H. Sokolowski. 2001. Investigation of Zn in an Al-Si alloy. In 40th Conference of Metallurgists (COM), Toronto, 467.Google Scholar
  35. 35.
    Shabestari, S.G., and J.E. Gruzleski. 1995. Modification of iron intermetallics by strontium in 413 aluminum alloys. AFS Transactions 103: 285–293.Google Scholar
  36. 36.
    Wang, F., et al. 2004. Effect of Fe and Mn additions on microstructure and wear properties of spray-deposited Al–20Si alloy. Materials Letters 58 (19): 2442–2446.CrossRefGoogle Scholar
  37. 37.
    Bian, X., and W. Wang. 2000. Thermal-rate treatment and structure transformation of Al–13 wt.% Si alloy melt. Materials Letters 44 (1): 54–58.CrossRefGoogle Scholar
  38. 38.
    Wang, Q.G., and C.J. Davidson. 2001. Solidification and precipitation behaviour of Al-Si-Mg casting alloys. Journal of Materials Science 36 (3): 739–750.CrossRefGoogle Scholar
  39. 39.
    Cullity, B.D., and S.R. Stock. 2001. Elements of x-ray diffraction. In Addison-Wesley series in metallurgy and materials, 3rd ed., 680. Reading: Addison-Wesley Pub. Co.Google Scholar
  40. 40.
    Malaczynski, G.W., et al. 1997. Diamond-like carbon coating for aluminum 390 alloy — automotive applications. Surface and Coatings Technology 93 (2–3): 280–286.CrossRefGoogle Scholar
  41. 41.
    Robles Hernandez, F.C., et al. 2005. Calculation of the liquidus temperature for hypo and hypereutectic aluminum silicon alloys. Materials Science and Engineering A 396 (1–2): 271–276.CrossRefGoogle Scholar
  42. 42.
    Kim, E.S., K.H. Lee, and Y.H. Moon. 2000. A feasibility study of the partial squeeze and vacuum die casting process. Journal of Materials Processing Technology 105 (1–2): 42–48.CrossRefGoogle Scholar
  43. 43.
    Lee, E.S. 2000. A study on the economics of hypereutectic aluminium-silicon (Al-Si) alloy machining. The International Journal of Advanced Manufacturing Technology 16 (10): 700–708.CrossRefGoogle Scholar
  44. 44.
    Spigarelli, S., E. Evangelista, and S. Cucchieri. 2004. Analysis of the creep response of an Al–17Si–4Cu–0.55Mg alloy. Materials Science and Engineering A 387–389: 702–705.CrossRefGoogle Scholar
  45. 45.
    Chen, C.M., C.C. Yang, and C.G. Chao. 2005. A novel method for net-shape forming of hypereutectic Al–Si alloys by thixocasting with powder preforms. Journal of Materials Processing Technology 167 (1): 103–109.CrossRefGoogle Scholar
  46. 46.
    Xu, C.L., et al. 2007. Effect of Al–P–Ti–TiC–Nd2O3 modifier on the microstructure and mechanical properties of hypereutectic Al–20 wt.%Si alloy. Materials Science and Engineering A 452–453: 341–346.CrossRefGoogle Scholar
  47. 47.
    Jiang, Q.C., et al. 2007. Estimation of the shifting distance of the eutectic point in hypereutectic Al–Si alloys by the lever rule. Scripta Materialia 56 (5): 329–332.CrossRefGoogle Scholar
  48. 48.
    Xu, C.L., et al. 2006. Effect of La2O3 in the Al–P–Ti–TiC–La2O3 modifier on primary silicon in hypereutectic Al–Si alloys. Journal of Alloys and Compounds 421 (1–2): 128–132.CrossRefGoogle Scholar
  49. 49.
    Rea, K.E., et al. 2005. FIB cross-sectioning of a single rapidly solidified hypereutectic Al-Si powder particle for HRTEM. Microscopy Research and Technique 66 (1): 10–16.CrossRefGoogle Scholar
  50. 50.
    Nave, M.D., A.K. Dahle, and D.H. StJohn. 2002. Halo formation in directional solidification. Acta Materialia 50 (11): 2837–2849.CrossRefGoogle Scholar
  51. 51.
    Dieter, G.E. 1986. Mechanical metallurgy. New York: McGraw-Hill.Google Scholar
  52. 52.
    Haque, M.M., and M.A. Maleque. 1998. Effect of process variables on structure and properties of aluminium–silicon piston alloy. Journal of Materials Processing Technology 77 (1–3): 122–128.CrossRefGoogle Scholar
  53. 53.
    Armstrong, G.L. 1978. Alloy selections for automotive aluminium castings. SAE Technical Paper No. 780249.Google Scholar
  54. 54.
    Dasgupta, R., C.C. Brown, and S. Marek. 1988. Optimization of properties in strontium modified 319 alloy castings. AFS Transactions 96: 297–310.Google Scholar
  55. 55.
    ———. 1989. Effect of increased magnesium content on the mechanical properties of sand-cast 319 aluminum alloy. AFS Transactions 97: 245–254.Google Scholar
  56. 56.
    Nishi, S., T. Shinoda, and E. Kato. 1968. Effects of iron contents, beryllium addition, and cooling velocity on mechanical properties of Al-Si-Mg-Zn cast alloys. Journal of Japan Institute of Light Metals 18 (12): 627–635.CrossRefGoogle Scholar
  57. 57.
    Kanicki, D.P., and W.M. Rasmussen. 1990. Processing molten aluminum - part 1: Understanding silicon modification. Modern Casting 1: 24.Google Scholar
  58. 58.
    Lidman, W.G. 1984. Master alloys improve aluminum casting properties. Foundry M&T 112 (8): 46–47.Google Scholar
  59. 59.
    Mohanty, P.S., F.H. Samuel, and J.E. Gruzleski. 1995. Experimental study on pore nucleation by inclusions in aluminum castings. AFS Transactions 103: 555–564.Google Scholar
  60. 60.
    Kyffin, W.J., W.M. Rainforth, and H. Jones. 2001. Effect of phosphorus additions on the spacing between primary silicon particles in a Bridgman solidified hypereutectic Al-Si alloy. Journal of Materials Science 36 (11): 2667–2672.CrossRefGoogle Scholar
  61. 61.
    Liu, X., et al. 2002. Application of Al-P master alloy to Al-Si piston alloy. Special Casting & Nonferrous Alloys 6: 43–45.Google Scholar
  62. 62.
    Müller, K. 1997. Advanced light alloys and composites. In NATO Advanced Study Institute. Zakopane: Kluwer Academic Publishers.Google Scholar
  63. 63.
    Kim, H.J. 2003. Effect of calcium on primary silicon particle size in hypereutectic Al–Si alloys. Materials Science and Technology 19 (7): 915–918.CrossRefGoogle Scholar
  64. 64.
    Kyffin, W.J., W.M. Rainforth, and H. Jones. 2001. Effect of treatment variables on size refinement by phosphide inoculants of primary silicon in hypereutectic Al–Si alloys. Materials Science and Technology 17 (8): 901–905.CrossRefGoogle Scholar
  65. 65.
    Kattoh, H., et al. 2002. Critical temperature for grain refining of primary Si in hyper-eutectic Al–Si alloy with phosphorus addition. Journal of Japan Institute of Light Metals 52 (1): 18–23.Google Scholar
  66. 66.
    Chang, J., I. Moon, and C. Choi. 1998. Refinement of cast microstructure of hypereutectic Al-Si alloys through the addition of rare earth metals. Journal of Materials Science 33 (20): 5015–5023.CrossRefGoogle Scholar
  67. 67.
    Yi, H., and D. Zhang. 2003. Morphologies of Si phase and La-rich phase in as-cast hypereutectic Al–Si–xLa alloys. Materials Letters 57 (16–17): 2523–2529.CrossRefGoogle Scholar
  68. 68.
    Yi, H., et al. 2003. Microstructures and La-rich compounds in a Cu-containing hypereutectic Al–Si alloy. Journal of Alloys and Compounds 354 (1–2): 159–164.CrossRefGoogle Scholar
  69. 69.
    Djurdjevic, M.B., et al. 2001. Quantification of Cu enriched phases in synthetic 3XX aluminum alloys using the thermal analysis technique. AFS Transactions 16: 1–12.Google Scholar
  70. 70.
    Kamiya, M., et al. 2008. Effect of Si content on turning machinability of Al-Si binary alloy castings. Materials Transactions 49 (3): 587–592.CrossRefGoogle Scholar
  71. 71.
    Kapranos, P., et al. 2003. Thixoforming of an automotive part in A390 hypereutectic Al–Si alloy. Journal of Materials Processing Technology 135 (2–3): 271–277.CrossRefGoogle Scholar
  72. 72.
    Gruzleski, J.E. 2000. Microstructure development during metal casting, 99–116. Des Plaines: American Foundrymen’s Society.Google Scholar
  73. 73.
    McDonald, S.D., K. Nogita, and A.K. Dahle. 2004. Eutectic nucleation in Al–Si alloys. Acta Materialia 52 (14): 4273–4280.CrossRefGoogle Scholar
  74. 74.
    Saheb, N., et al. 2001. Influence of Ti addition on wear properties of Al-Si eutectic alloys. Wear 249 (8): 656–662.CrossRefGoogle Scholar
  75. 75.
    Warmuzek, M. 2004. Aluminum-silicon casting alloys: Atlas of microfractographs, 124. Materials Park: ASM International.Google Scholar
  76. 76.
    Dahle, A.K., et al. 2005. Eutectic modification and microstructure development in Al-Si alloys. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 413: 243–248.Google Scholar
  77. 77.
    Flood, S.C., and J.D. Hunt. 1981. Modification of Al-Si eutectic alloys with Na. Metal Science 15 (7): 287–294.CrossRefGoogle Scholar
  78. 78.
    Hegde, S., and K.N. Prabhu. 2008. Modification of eutectic silicon in Al-Si alloys. Journal of Materials Science 43 (9): 3009–3027.CrossRefGoogle Scholar
  79. 79.
    Heshmatpour, B. 1997. Modification of silicon in eutectic and hyper-eutectic Al-Si alloys. Light Metals 1997: 801–808.Google Scholar
  80. 80.
    Tiedje, N.S., et al. 2012. A solidification model for unmodified, Na-modified and Sr-modified Al-Si alloys. IOP Conference Series: Materials Science and Engineering 27 (1): 012033. IOP Publishing.Google Scholar
  81. 81.
    Preston, G.D. 1938. Structure of age-hardened aluminium-copper alloys. Nature 142 (3595): 570–570.CrossRefGoogle Scholar
  82. 82.
    Guinier, A. 1938. Structure of age-hardened aluminium-copper alloys. Nature 142 (3595): 569–570.CrossRefGoogle Scholar
  83. 83.
    Callister, W.D. 2007. Materials science and engineering: An introduction. 7th ed. New York: Wiley.Google Scholar
  84. 84.
    Porter, D.A., and K.E. Easterling. 2001. Phase transformations in metals and alloys. 2nd ed. Boca Raton: CRC Press.Google Scholar
  85. 85.
    Evans, E.L., C.B. Alcock, and O. Kubaschewski, eds. 1967. Metallurgical thermochemistry. 4th ed. Oxford, UK/New York: Pergamon Press.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Francisco C. Robles Hernandez
    • 1
  • Jose Martin Herrera Ramírez
    • 2
  • Robert Mackay
    • 3
  1. 1.College of TechnologyUniversity of HoustonHoustonUSA
  2. 2.Centro de Investigación en Materiales AvanzadosChihuahuaMexico
  3. 3.Metallurgical & Heat TreatmentNemak US/Canada Business UnitWindsorCanada

Personalised recommendations