Skip to main content

Modeling the Compressor Component, Design and Off-Design

  • Chapter
  • First Online:
Gas Turbine Design, Components and System Design Integration
  • 3131 Accesses

Abstract

As mentioned in Chapter 1, the function of a compressor is to increase the total pressure of the working fluid. According to the conservation law of energy, this total pressure increase requires external energy input, which must be added to the system in the form of mechanical energy. The compressor rotor blades exert forces on the working medium thereby increasing its total pressure. Based on efficiency and performance requirements, three types of compressor designs are applied. These are axial flow compressors, radial or centrifugal compressors, and mixed flow compressors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Lieblein, S., Schwenk, F., Broderick, R.L., Diffusions factor for estimating losses and limiting blade loadings in axial flow compressor blade elements, NACA RM E53D01 June 1953.

    Google Scholar 

  • 2. Lieblein, S., Review of high performance axial flow compressor blade element theory, NACA RME 53L22 April 1954.

    Google Scholar 

  • 3. Lieblein, S., Roudebush, W. H., Theoretical loss relations for low speed two dimensional cascade flow NACA Technical Note 3662 March 1956.

    Google Scholar 

  • 4. Lieblein, S., Analysis of experimental low-speed loss and stall characteristics of two-dimensional compressor blade cascades, NACA RM E57A28 March 1957.

    Google Scholar 

  • 5. Lieblein, S., Loss and stall analysis of compressor cascades, ASME Journal of Basic Engineering. Sept. 1959.

    Google Scholar 

  • 6. NASA SP-36 NASA Report, 1965.

    Google Scholar 

  • 7. Miller, G.R., Hartmann, M.J., Experimental shock configuration and shock losses in a transonic compressor rotor at design point NACA RM E58A14b, June 1958.

    Google Scholar 

  • 8.Miller, G.R., Lewis, G.W., Hartman, M.J., Shock losses in transonic compressor blade rows ASME Journal for Engineering and Power July 1961, pp. 235-241.

    Google Scholar 

  • 9. Schwenk, F.C., Lewis, G.W., Hartmann, M.J., A preliminary analysis of the magnitude of shock losses in transonic compressors NACA RM #57A30 March 1957.

    Google Scholar 

  • 10. Gostelow, J.P., Krabacher, K.W., Smith, L.H., Performance comparisons of the high Mach number compressor rotor blading NASA Washington 1968, NASA CR-1256.

    Google Scholar 

  • 11. Gostelow, J.P., Design performance evaluation of four transonic compressor rotors, ASMEJournal for Engineering and Power, January 1971.

    Google Scholar 

  • 12. Seylor, D.R., Smith, L.H., Single stage experimental evaluation of high Mach number compressor rotor blading, Part I, Design of rotor blading. NASA CR-54581, GE R66fpd321P, 1967.

    Google Scholar 

  • 13. Seylor, D.R., Gostelow, J.P., Single stage experimental evaluation of high Mach number compressor rotor blading, Part II, Performance of rotor 1B. NASA CR-54582, GE R67fpd236, 1967.

    Google Scholar 

  • 14. Gostelow, J.P., Krabacher, K.W., Single stage experimental evaluation of high Mach number compressor rotor blading, Part III, Performance of rotor 2E. NASA CR-54583, 1967.

    Google Scholar 

  • 15. Krabacher, K.W., Gostelow, J.P., Single stage experimental evaluation of high Mach number compressor rotor blading, Part IV, Performance of Rotor 2D. NASA CR-54584, 1967.

    Google Scholar 

  • 16. Krabacher, K.W., Gostelow, J.P., Single stage experimental evaluation of high Mach number compressor rotor blading, Part V, Performance of Rotor 2B. NASA CR-54585, 1967.

    Google Scholar 

  • 17. N.T., Keenan, M.J., Tramm, P.C., Design report, Single stage evaluation of high Mach number compressor stages, NASA CR-72562 PWA-3546, July 1969.

    Google Scholar 

  • 18. Koch, C.C., Smith, L.H., Loss sources and magnitudes in axial-flow compressors, ASME Journal of Engineering and Power, January 5, Vol. 98, N0. 3, pp. 411-424, July 1976.

    Google Scholar 

  • 19. Schobeiri, M.T., Verlustkorrelationen für transsonische Kompressoren, BBCStudie, TN-78/20, 1987.

    Google Scholar 

  • 20. König, W.M., Hennecke, D.K., Fottner, L., Improved Blade Profile Loss and Deviation Angle Models for Advanced Transonic Compressor Bladings: Part I-A Model for Subsonic Flow, ASME Paper, No. 94-GT-335.

    Google Scholar 

  • 21. Schobeiri, M. T., 1998, “A New Shock Loss Model for Transonic and Supersonic Axial Compressors With Curved Blades,” AIAA, Journal of Propulsion and Power, Vol. 14, No. 4, pp. 470-478.

    Google Scholar 

  • 22. Schobeiri, M. T., 1997, “Advanced Compressor Loss Correlations, Part I: Theoretical Aspects,” International Journal of Rotating Machinery, 1997, Vol. 3, pp. 163-177.

    Google Scholar 

  • 23. Schobeiri, M. T., 1997, “Advanced Compressor Loss Correlations, Part II: Experimental Verifications,” International Journal of Rotating Machinery, 1997, Vol. 3, pp. 179-187.

    Google Scholar 

  • 24. Schobeiri, M.T, Attia, M. 2003, “Active Aerodynamic Control of Multi-stage Axial Compressor Instability and Surge by Dynamically Adjusting the Stator Blades,” AIAA-Journal of Propulsion and Power, Vol. 19, No. 2, pp 312-317.

    Google Scholar 

  • 25. Levine, Ph., Two-dimensional inlet conditions for a supersonic compressor with curved blades, Journal of Applied Mechanics, Vol. 24, No. 2, June 1957.

    Google Scholar 

  • 26. Balzer, R.L., A method for predicting compressor cascade total pressure losses when the inletrelative Mach number is greater than unity, ASME Paper 70-GT-57.

    Google Scholar 

  • 27. Swan, W.C., A practical method of predicting transonic compressor performance, ASME Journalfor Engineering and Power, Vol. 83, pp. 322-330, July 1961.

    Google Scholar 

  • 28. Smith, L.H., Private communication with the author and the GE-Design Information Memorandum 1954: A Note on The NACA Diffusion Factor, 1995.

    Google Scholar 

  • 29. Seylor, D.R., Smith, L.H., Single stage experimental evaluation of high Mach number compressor rotor blading, Part I, Design of rotor blading. NASA CR-54581, GE R66fpd321P, 1967.

    Google Scholar 

  • 30. Seylor, D.R., Gostelow, J.P., Single stage experimental evaluation of high Mach number compressor rotor blading, Part II, Performance of rotor 1B. NASA CR-54582, GE R67fpd236,1967.

    Google Scholar 

  • 31. N.T., Keenan, M.J., Tramm, P.C., Design report, Single stage evaluation of high Mach number compressor stages, NASA CR-72562 PWA-3546, July 1969.

    Google Scholar 

  • 32. Sulam, D.H., Keenan, M.J., Flynn, J.T., 1970. Single stage evaluation of highly loaded high Mach number compressor stages. II Data and performance of a multi-circular arc rotor. NASA CR-72694 PWA

    Google Scholar 

  • 33. Levine, Ph., Two-dimensional inlet conditions for a supersonic compressor with curved blades, Journal of Applied Mechanics, Vol. 24, No. 2, June 1957.

    Google Scholar 

  • 34. Balzer, R.L., A method for predicting compressor cascade total pressure losses when the inlet relative Mach number is greater than unity, ASME Paper 70-GT-57.

    Google Scholar 

  • 35. Swan, W.C., A practical method of predicting transonic compressor performance, ASME Journal for Engineering and Power, Vol. 83, pp. 322-330, July 1961.

    Google Scholar 

  • 36. Schobeiri, M. T., 1998, “A New Shock Loss Model for Transonic and Supersonic Axial Compressors With Curved Blades,” AIAA, Journal of Propulsion and Power, Vol. 14, No. 4, pp. 470-478.

    Google Scholar 

  • 37. Levine, Ph., Two-dimensional inlet conditions for a supersonic compressor with curved blades, Journal of Applied Mechanics, Vol. 24, No. 2, June 1957.

    Google Scholar 

  • 38. Grieb, H., Schill, G., Gumucio, R., 1975. A semi-empirical method for the determination of multistage axial compressor efficiency. ASME-Paper 75-GT-11.

    Google Scholar 

  • 39. Carter, A.D.S., 1948. Three-Dimensional flow theories for axial compressors and turbines, Proceedings of the Institution of Mechanical Engineers, Vol. 159, p. 255.

    Google Scholar 

  • 40. Hirsch, Ch., 1978. Axial compressor performance prediction, survey of deviation and loss correlations AGARD PEP Working Group 12.

    Google Scholar 

  • 41. Swan, W.C., A practical method of predicting transonic compressor performance, ASME Journal for Engineering and Power, Vol. 83, pp. 322-330, July 1961.

    Google Scholar 

  • 42. Jansen, W., Moffat, W.C., 1967. The off-design analysis of axial flow compressors ASME, Journal of Eng for Power, pp. 453-462.

    Google Scholar 

  • 43. Davis, W. R., 1971. A computer program for the analysis and design of turbomachinery, Carleton University Report No. ME/A.

    Google Scholar 

  • 44. Dettmering, W., Grahl, K., 1971. Machzahleinfluß auf Verdichter charakteristik, ZFW 19.

    Google Scholar 

  • 45. Fottner, L., 1979. Answer to questionnaire on compressor loss and deviation angle correlations, AGARD-PEP, 1979. Working Group 12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meinhard T. Schobeiri .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Schobeiri, M.T. (2018). Modeling the Compressor Component, Design and Off-Design. In: Gas Turbine Design, Components and System Design Integration. Springer, Cham. https://doi.org/10.1007/978-3-319-58378-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58378-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58376-1

  • Online ISBN: 978-3-319-58378-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics