Skip to main content

Increasing Biomass Production to Sustain the Bioeconomy

  • Chapter
  • First Online:
Knowledge-Driven Developments in the Bioeconomy

Part of the book series: Economic Complexity and Evolution ((ECAE))

Abstract

The bioeconomy builds on biomass as a resource base. Increased demand for biomass in a growing bioeconomy will lead to increased competition for this resource. However, current bioeconomy strategies are not sufficient to ensure the additional biomass demand is met sustainably. This contribution describes the criteria for a sustainable production and supply of biomass and suggests approaches for increasing the availability of sustainably produced biomass. In this context, the concept of sustainable agricultural intensification is elaborated by showing how breeding and more efficient cropping and land use systems can contribute to increasing biomass production. The participation and empowerment of farmers is addressed as a prerequisite for the implementation of sustainable biomass production. It is concluded that sustainable intensification on available agricultural land has large potential for increasing biomass supply and appears a more promising strategy than mobilizing additional land resources, mainly marginal land. In this strategy, the integration of land use functions, biomass production systems and biomass uses offer an encouraging method for avoiding competition for biomass and land for its production. A biomass supply strategy is envisioned, which makes use of all forms of biomass in an integrated approach and takes account of the interactions between them through the conceptualization of bioeconomic networks. The implementation of efficient strategies for the securing of sustainable biomass production and supply will require both continued research and political support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman, K., Conard, M., Cullgigan, P., Plunz, R., Sutto, M.-P., & Whittinghill, P. (2014). Sustainable food systems for future cities: the potential of urban agriculture. The Economic and Social Review, 45, 189–206.

    Google Scholar 

  • Adegbidi, H., Briggs, R. D., Volk, T. A., White, E. H., & Abrahamson, L. P. (2003). Effect of organic amendments and slow-release nitrogen fertilizer on willow biomass production and soil chemical characteristics. Biomass and Bioenergy, 25, 389–398.

    Article  Google Scholar 

  • Alasti, E. (2011). Social acceptance of bioenergy in Europe. IIIEE Theses 2011:13. http://www.syntropolis.net/media/library/Social_Acceptance_of_Bioenergy_in_Europe.pdf

  • Aulakh, J., & Regmi, A. (2013). Post-harvest food losses estimation – Development of consistent methodology. http://www.fao.org/fileadmin/templates/ess/documents/meetings_and_workshops/GS_SAC_2013/Improving_methods_for_estimating_post_harvest_losses/Final_PHLs_Estimation_6-13-13.pdf

  • Baldock, D., Beaufoy, G., Brouwer, F., & Godeschalk, F. (1996). Farming at the margins: Abandonment of redeployment of agricultural land in Europe (pp. 1–182). London/The Hague: Institute for European Environmental Policy (IEEP)/Agricultural Economics Research Institute (LEI-DLO).

    Google Scholar 

  • Barry, M.-L., Steyn, H., & Brent, A. (2011). Selection of renewable energy technologies for Africa: Eight case studies in Rwanda, Tanzania and Malawi. Renewable Energy, 36, 2845–2852.

    Article  Google Scholar 

  • Becker, K., Wulfmeyer, V., Berger, T., Gebel, J., & Münch, W. (2013). Carbon farming in hot, dry coastal areas: An option for climate change mitigation. Earth System Dynamics, 4, 237–251.

    Article  Google Scholar 

  • Beringer, T., Lucht, W., & Schaphoff, S. (2011). Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy, 3, 299–312.

    Article  Google Scholar 

  • Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy, Special Issue: Biochar, 5, 202–214.

    Article  Google Scholar 

  • Bouwman, A. F., Van der Hoek, K. W., Eickhout, B., & Soenario, I. (2005). Exploring changes in world ruminant production systems. Agricultural Systems, 84, 121–153.

    Article  Google Scholar 

  • Buhle, L., Donnison, I., Heinsoo, K., Sudekum, K.-H., & Wachendorf, M. (2010). PROGRASS – Erhalt von Naturschutzgrünland durch eine dezentrale energetische Verwertung. Mitteilungen der Gesellschaft für Pflanzenbauwissenschaften, 22, 275–276.

    Google Scholar 

  • Bundesamt für Naturschutz (BfN). (2014). Grünland-Report. Alles im grünen Bereich? Bundesamt für Naturschutz (BfN), Referat Presse und Öffentlichkeitsarbeit, Konstantinstr. 110, 53179 Bonn. Accessed December 22, 2014, from www.bfn.de

  • Burnod, P., Gingembre, M., & Andrianirina Ratsialonana, R. (2013). Competition over authority and access: International land deals in madagascar. Development and Change, 44, 357–379.

    Article  Google Scholar 

  • CADETT. (1998). Straw fired Plants in Denmark. CADDET Renewable Energy Newsletter, March 1997, 10–12. Accessed December 22, 2015, from http://www.caddet-re.org/assets/1-97art3.pdf

  • Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51, 1412–1421.

    Article  Google Scholar 

  • Dale, V. H., Kline, K. L., Wiens, J., & Fargione, J. (2010). Biofuels: Implications for land use and biodiversity. Biofuels and Sustainability Reports, 1–13. Accessed December 2, 2014, from http://www.esa.org/biofuelsreports/

  • Dauber, J., Brown, C., Fernando, A. L., et al. (2012). Bioenergy from “surplus” land: Environmental and socio-economic implications. BioRisk, 7, 5–50.

    Article  Google Scholar 

  • Dickinson, N. M., Baker, A. J. M., Doronila, A., Roger, S., & Reeves, D. (2010). Phytoremediation of inorganics: Realism and synergies. International Journal of Phytoremediation, 11, 97–114.

    Article  Google Scholar 

  • Dornburg, V., & Faaij, A. (2005). Cost and CO2-emission reduction of biomass cascading – Methodological aspects and case study of SRF poplar. Climatic Change, 71, 373–408.

    Article  Google Scholar 

  • Dornburg, V., van Vuuren, D., van de Ven, G., et al. (2010). Bioenergy revisited: Key factors in global potentials of bioenergy. Energy and Environmental Science, 3, 258–267.

    Article  Google Scholar 

  • Doyle, C. J. (1997). A review of the use of models of weed control in integrated crop protection. Agriculture, Ecosystems and Environment, 64, 165–172.

    Article  Google Scholar 

  • EC. (2009). Directive 2009/28/EC of the European parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/EC and 2003/30/EC.

    Google Scholar 

  • FAO. (2003). World agriculture: Towards 2015/2030. An FAO perspective, food agricultural organisation. London, UK: Earthscan Publications Ltd.

    Google Scholar 

  • FAO. (2014). Are grasslands under threat? Accessed December 4, 2014, from http://www.fao.org/ag/agp/agpc/doc/grass_stats/grass-stats.htm

  • FNR. (2014). Accessed December 10, 2014, from www.fnr.de

  • Fraunhofer IGB. (2014). Rückgewinnung von Nährstoffen zur Herstellung von Düngemitteln. Accessed December 22, 2014, from http://www.igb.fraunhofer.de/content/dam/igb/de/documents/broschueren/naehrstoffrueckgewinnung.pdf

  • Freibauer, A., Rounsevell, M., Smith, P., & Verhagen, J. (2004). Carbon sequestration in the agricultural soils of Europe. Geoderma, 122, 1–23.

    Article  Google Scholar 

  • Fu, G., Chen, S., & McCool, D. K. (2006). Modelling the impacts of no-till practice on soil erosion and sediment yield with RUSLE, SEDD, and ArcView GIS. Soil and Tillage Research, 85, 38–49.

    Article  Google Scholar 

  • Gallagher, B. J. (2011). The economics of producing biodiesel from algae. Renewable Energy, 36, 158–162.

    Article  Google Scholar 

  • Garnett, T., & Godfray, C. (2012). Sustainable intensification in agriculture. Navigating a course through competing food system priorities. Food Climate Research Network and the Oxford Martin Programme on the Future of Food, University of Oxford, UK.

    Google Scholar 

  • Garnett, T., Appleby, M. C., Balmford, A., Bateman, I. J., Benton, T. G., Bloomer, P., Burlingame, B., Dawkins, M., Dolan, L., Fraser, D., Herrero, M., Hoffmann, I., Smith, P., Thornton, P. K., Toulmin, C., Vermeulen, S. J., & Godfray, H. C. J. (2013). Sutainable intensification in agriculture: Premises and policies. Science, 341(5), 33–34.

    Article  Google Scholar 

  • Giller, K., van den Veen, G., & van Ittersum, M. (2007). Competing claims on natural resources: Food, fuel, fibre or forest? In A. Haverkort, P. Bindraban, & H. Bos (Eds.), Food, fuel or forest? Opportunities, threats and knowledge gaps of feedstock production for bio-energy (pp. 37–41). Wageningen: PlantResearch International B.V. (Report 142).

    Google Scholar 

  • Giuntoli, J., Agostini, A., Edwards, R., & Marelli, L. (2014). Solid and gaseous bioenergy pathways: Input values and GHG emissions (JRC Science and Policy reports Report EUR 26696 EN).

    Google Scholar 

  • Graham, R. L., Nelson, R., Sheehan, J., Perlack, R. D., & Wright, L. L. (2007). Current and potential US corn stover supplies. Agronomy Journal, 99, 1–11.

    Article  Google Scholar 

  • Grelle, A., Aronsson, P., Weslien, P., Klemedtsson, L., & Lindroth, A. (2007). Large carbon-sink potential by Kyoto forests in Sweden – A case study on willow plantations. Tellus, 59, 910–918.

    Article  Google Scholar 

  • Grethe, H., Deppermann, A., & Marquardt, S. (2013). Biofuels: Effects on global agricultural prices and climate change. Study for Heinrich Böll Stiftung and Oxfam Germany. Institute of Agrcultural Policy and Markets, University of Hohenheim, Stuttgart.

    Google Scholar 

  • Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R., & Meybeck, A. (2011). Global food losses and food waste: Extent, causes and prevention. Rome: Food and Agriculture Organization (FAO) of the United Nations.

    Google Scholar 

  • Heinsoo, K., Melts, I., Sammul, M., & Holm, B. (2010). The potential of estonian semi-natural grasslands for bioenergy production. Agriculture, Ecosystems and Environment, 137, 86–92.

    Article  Google Scholar 

  • Hilger, T., Lewandowski, I., Winkler, B., Ramsperger, B., Kageyama P., & Colombo, C. (2015). Seeds of change—Plant genetic resources and people’s livelihoods, agroecology. In V. Pilipavicius (Ed.). InTech. doi:10.5772/59984. Available from https://www.intechopen.com/books/agroecology/seeds-of-change-plant-genetic-resources-and-people-s-livelihoods

  • Hodges, R. J., Buzby, J. C., & Bennett, B. (2011). Postharvest losses and waste in developed and less developed countries: Opportunities to improve resource use. Journal of Agricultural Science, 149, 37–45.

    Article  Google Scholar 

  • Hodgson, K., Campbell, M. C., & Bailkey, M. (2011). Investing in healthy, sustainable places through urban agriculture. American Planning Association, Planning Advisory Service Report Number 563, January 2011. http://www.fundersnetwork.org/files/learn/Investing_in_Urban_Agriculture_Final_110713.pdf

  • Howell, T. A. (2001). Enhancing water use efficiency in irrigated agriculture. Agronomy Journal, 93, 281–289.

    Article  Google Scholar 

  • Huang, W.-D., & Zahng Y-H, D. (2011). Energy efficiency analysis: Biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems. PloS One, 6(e22113), 1–10.

    Google Scholar 

  • IEA. (2007). IEA energy technology essentials. Biomass for Power Generation and CHP. ETE03. http://www.iea.org/textbase/techno/essentials.htm

  • IEA Bioenergy. (2009). Biorefineries: Adding value to the sustainable utilisation of biomass. Accessed March 14, 2014, from http://www.ieabioenergy.com/wp-content/uploads/2013/10/Task-42-Booklet.pdf

  • Jirjis, R. (1995). Storage and drying of wood fuel. Biomass and Bioenergy, 9, 181–190.

    Article  Google Scholar 

  • Jørgensen, U. (2011). Benefits versus risks of growing biofuel crops: The case of Miscanthus. Current Opinion in Environmental Sustainability, 3, 24–30.

    Article  Google Scholar 

  • Kidane, W., Maetz, M., & Dardel, P. (2006). Food security and agricultural development in sub-Saharan Africa: Building a case for more public support. Sub-regional Office for Southern and East Africa (Harare), Food and Agriculture Organisation of United Nations (FAO), Rome.

    Google Scholar 

  • Kosonen, M., Otsamo, A., & Kuusiplao, J. (1997). Financial, economic and environmental profitability of reforestation of Imperata grasslands in Indonesia. Forestry Ecology and Management, 99, 247–259.

    Article  Google Scholar 

  • Krawinkel, M. B. (2012). Overcoming undernutrition with local resources in Africa, Asia and Latin America. Journal of the Science of Food and Agriculture, 92, 2757–2759.

    Article  Google Scholar 

  • Krupinsky, J. M., Bailey, K. L., McMullen, M. P., Gossen, B. D., & Turkington, T. K. (2002). Managing plant disease risk in diversified cropping systems. Agronomy Journal, 94, 198–209.

    Article  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1627.

    Article  Google Scholar 

  • Lal, R. (2005). World crop residues production and implication of its use as a biofuel. Environment International, 31, 575–586.

    Article  Google Scholar 

  • Latif, S., & Müller, J. (2014). Cassava – How to explore the “all-sufficient”. Ruralia, 21(3), 30–31.

    Google Scholar 

  • Laurance, W., Koh, L. P., Butler, R., Sodhi, N. S., Bradshaw, C. J. A., Neidel, J. D., Consunji, H., & Vega, J. M. (2010). Improving the performance of the roundtable on sustainable palm oil for nature conservation. Conservation Biology, 24, 377–381.

    Article  Google Scholar 

  • Lencsés, E. I., & Takács-György, K. (2014). Farmers’ perception of precision farming technology among Hungarian farmers. Sustainability, 6, 8452–8465.

    Article  Google Scholar 

  • Letourneau, D., & van Bruggen, A. (2006). Crop protection in organic agriculture. In P. Kristiansen, A. Taji, & J. Reganold (Eds.), Organic agriculture: A global perspective (pp. 93–114). Collingwood, VIC: CSIRO Publishing.

    Google Scholar 

  • Levitt, T. (2011, September 13). Mexico’s poor suffer as food speculation fuels tortilla crisis. Ecologist. Accessed August 26, 2014, http://www.theecologist.org/trial_investigations/1051194/mexicos_poor_suffer_as_food_speculation_fuels_tortilla_crisis.html

  • Lewandowski, I. (2013). Soil carbon and biofuels. In R. Lal, R. Hüttel, B. U. Schneider, & J. von Braun (Eds.), Multifunctionality of ecosystem services. Ecosystem services and carbon sequestration in the biosphere (pp. 333–356). Dordrecht: Springer Science+Business Media.

    Google Scholar 

  • Lewandowski, I. (2015). Securing a sustainable biomass supply in a growing bioeconomy. Global Food Security, 6, 34–42.

    Article  Google Scholar 

  • Lewandowski, I., & Kauter, D. (2003). The influence of nitrogen fertilizer on the yield and combustion quality of whole grain crops for solid fuel use. Industrial Crops and Products, 17, 103–117.

    Article  Google Scholar 

  • Lewandowski, I., Londo, M., Schmidt, U., & Faaij, A. (2004). Biomass production in multiple land use systems: Categorization of feasible land use functions and their quantification by the example of phytoremediation. In Proceedings of the 2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection (pp. 54–57). Rome, Italy.

    Google Scholar 

  • Lewandowski, I., Schmidt, U., Londo, M., & Faaij, A. (2006). The economic value of the phytoremediation function. Agricultural Systems, 89, 68–89.

    Article  Google Scholar 

  • Lewis, S. M., & Kelly, M. (2014). Mapping the potential for biofuel production on marginal lands: Differences in definitions, data and models across scales. ISPRS International Journal of Geo-Information, 3, 430–459.

    Article  Google Scholar 

  • Linden, D. R., Clapp, C. E., & Dowdy, R. H. (2000). Long-term corn grain and stover yields as a function of tillage and residue removal in east central Minnesota. Soil and Tillage Research, 56, 167–174.

    Article  Google Scholar 

  • Lywood, W., Pinkney, J., & Cockerill, S. (2009). The relative contributions of changes in yield and land area to increasing crop output. GCB Bioenergy, 1, 360–369.

    Article  Google Scholar 

  • Mandl, M. G. (2010). Status of green biorefining in Europe. Biofuels, Bioproducts and Biorefining, 4, 268–274.

    Article  Google Scholar 

  • Meehan, P. G., McDonnell, K. P., & Finnan, J. M. (2013). An assessment of the effect of harvest time and harvest method on biomass loss for Miscanthus × giganteus. GCB Bioenergy, 5, 400–407.

    Article  Google Scholar 

  • Möller, K., Schulz, R., & Müller, T. (2009). Mit Gärresten richtig düngen. Stuttgart: Aktuelle Informationen für Berater. Institut für Pflanzenernährung der Universität Hohenheim.

    Google Scholar 

  • Naylor, R. L., Liska, A. J., Burke, M. B., Falcon, W. P., Gaskell, J. C., Rozelle, S. D., & Cassman, K. G. (2007). The ripple effect: Biofuels, food security, and the environment. Environment, 49, 30–43.

    Google Scholar 

  • Nhamo, N., Rodenburg, J., Zenna, N., Makombe, G., & Luzi-Kihupi, A. (2014). Narrowing the rice yield gap in East and Southern Africa: Using and adapting existing technologies. Agricultural Systems, 131, 45–55.

    Article  Google Scholar 

  • OECD-FAO. (2012). Agricultural Outlook 2012. Accessed December 22, 2014, from http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Oilcrops/Documents/OECD_Reports/Ch5StatAnnex.pdf

  • Oerke, E.-C. (2006). Crop losses to pests. Journal of Agricultural Science, 144, 31–43.

    Article  Google Scholar 

  • Otsamo, A., Adjers, G., Hadi, T. S., Kuusipalo, J., Tuomeal, K., & Vuokko, R. (1995). Effect of site preparation and initial fertilization on the establishment and growth of four plantation tree species used in reforestation of Imperata cylindrical (L.) Beauv. Dominated grasslands. Forest Ecology and Management, 73, 271–277.

    Article  Google Scholar 

  • Parajuli, R., Dalgaard, T., Jørgensen, U., Adamsen, A. P. S., Tydeman Knudsen, M., Birkved, M., Gylling, M., & Schjørring, J. K. (2015). Biorefining in the prevailing energy and material crisis: A review of sustainable pathways for biorefining value chains and sustainability assessment methodologies. Renewable and Sustainable Energy Reviews, 43, 244–263.

    Article  Google Scholar 

  • Peeters, A., Beaufoy, G., Canals, R. M., De Vliegher, A., et al. (2014). Grassland term definitions and classifications adapted to the diversity of European grassland-based systems. Grassland Science in Europe, 19, 743–750.

    Google Scholar 

  • Pfau, S. F., Hagens, J. E., Dankbaar, B., & Smits, A. J. M. (2014). Visions of sustainability in bioeconomy research. Sustainability, 6, 1222–1249.

    Article  Google Scholar 

  • Poetsch, J., Haupenthal, D., Lewandowski, I., Oberländer, D., & Hilger, T. (2012). Acrocomia aculeata – A sustainable oil crop. Ruralia, 21(3), 41–44.

    Google Scholar 

  • Pretty, J. (2008). Agricultural sustainability: Concepts, principles and evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 447–465.

    Article  Google Scholar 

  • Pretty, J., Sutherland, W. J., Ashby, J., et al. (2010). The top 100 questions of importance to the future of global agriculture. International Journal of Agricultural Sustainability, 8, 219–236.

    Article  Google Scholar 

  • Pretty, J., Toulmin, C., & Williams, S. (2011). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 9(1), 5–24.

    Article  Google Scholar 

  • Prochnow, A., Heiermann, M., Plöchl, M., Linke, B., Idler, C., Amon, T., & Hobbs, P. J. (2009). Bioenergy from permanent grassland – A review: 1. Biogas. Bioresource Technology, 100, 4931–4944.

    Article  Google Scholar 

  • Raghu, S., Spencer, J. L., Davis, A. S., & Wiedenmann, R. N. (2011). Ecological considerations in the sustainable development of terrestrial biofuel crops. Current Opinion in Environmental Sustainability, 3, 15–23.

    Article  Google Scholar 

  • Reardon, T., Kelly, V., Crawford, E., Diagana, B., Dioné, J., Savadogo, K., & Boughton, D. (1997). Promoting sustainable intensification and productivity growth in Sahel agriculture after macroeconomic policy reform. Food Policy, 22(4), 317–327.

    Article  Google Scholar 

  • Reijnders, L. (2012). Lipid-based liquid biofuels from autotrophic microalgae: Energetic and environmental performance. WIREs Energy and Environment, 2, 73–85.

    Article  Google Scholar 

  • Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102, 100–112.

    Article  Google Scholar 

  • Ros, J. (2014). Biomass Potential, Oral presentation at the OECD Workshop on “Sustainable Biomass drives the next Bioeconomy: A new industrial revolution?”. 10./11.6.2014. Paris: OECD Headquarters.

    Google Scholar 

  • Rösch, C., Skarka, J., Raab, K., & Stelzer, V. (2009). Energy production from grassland – Assessing the sustainability of different process chains under German conditions. Biomass and Bioenergy, 33, 689–700.

    Article  Google Scholar 

  • Royal Society. (2009). Reaping the benefit, science and the sustainable intensification of global agriculture. The Royal Society. https://royalsociety.org/~/media/Royal_Society_Content/policy/publications/2009/4294967719.pdf

  • Sauerborn, J. (2010, Dezember). Mein Dach ist mein Acker. dlz-agrarmagazin, 116–120.

    Google Scholar 

  • Scarlat, N., Martinov, M., & Dallemand, J. F. (2010). Assessment of the availability of agricultural crop residues in the European Union: Potential and limitations for bioenergy use. Waste Management, 30, 1889–1897.

    Article  Google Scholar 

  • Schnabel, D. (2014). Head of Unit Bioeconomy/Biotechnology, Ministry of Innovation, Science & Research of the German State of North-Rhine Westfalia, Düsseldorf, Germany; oral presentation on the conference Bioökonomie – Nachhaltige Alternative zur fossilen Wirtschaft? 3./4.11.2014 in Berlin, Germany.

    Google Scholar 

  • Searle, S. Y., & Malins, C. J. (2014). Will energy crop yields meet expectations? Biomass and Bioenergy, 65, 3–12.

    Article  Google Scholar 

  • Smeets, E., Faaij, A., Lewandowski, J., & Turkenburg, W. (2007). A bottom-up assessment and review of global bioenergy potentials to 2050. Energy and Combustion Science, 33, 56–106.

    Article  Google Scholar 

  • Solomon, B. D. (2010). Biofuels and sustainability. Annals of the New York Academy of Sciences, 1185, 119–134.

    Article  Google Scholar 

  • Staffas, L., Gustavsson, M., & McCormick, K. (2013). Strategies and policies for the bioeconomy and bio-based economy: An analysis of official national approaches. Sustainability, 5, 2751–2769.

    Article  Google Scholar 

  • Tait, J., & Barker, G. (2011). Global food security and the governance of modern biotechnologies. EMBO Reports, 12, 763–768.

    Article  Google Scholar 

  • The World Bank. (2009). Awakening Africa’s sleeping giant prospects for commercial agriculture in the Guinea Savannah Zone and beyond. Washington, DC. doi:10.1596/978-0-8213-7941-7.

  • Theuvsen, L., Plumeyer, C.-H., & Emmann, C. H. (2014). Endbericht zum Projekt: Einfluss der Biogasproduktion auf den Landpachtmarkt in Niedersachsen. Georg-August-Universität Göttingen, Department für Agrarökonomie und Rurale Entwicklung, Betriebswirtschaftslehre des Agribusiness, Platz der Göttinger Sieben 5, 37073 Göttingen.

    Google Scholar 

  • Thumm, U., Raufer, B., & Lewandowski, I. (2014). Novel products from grassland (bioenergy and biorefinery). Grassland Science in Europe, 19, 429–437.

    Google Scholar 

  • Tilman, D., Socolow, R., Foley, J. A., Hill, J., Larson, E., Lynd, L., Pacala, S., Reilly, J., Searchinger, T., Somerville, C., et al. (2009). Beneficial biofuels – The food, energy, and environment trilemma. Science, 325, 270–271.

    Article  Google Scholar 

  • Triberti, L., Nastri, A., Giordani, A., Comellini, F., Baldoni, G., & Toderi, G. (2008). Can mineral and organic fertilization help sequestrate carbon dioxide in cropland? European Journal of Agronomy, 29, 13–20.

    Article  Google Scholar 

  • USDA. (2015). US Department of Agriculture, Statistics 2015. Accessed January 08, 2015, from http://www.statista.com/statistics/263937/vegetable-oils-global-consumption/

  • van Dam, J. E. G., de Klerk-Engels, B., Struik, P. C., & Rabbinge, R. (2005). Securing renewable resource supplies for changing market demands in a bio-based economy. Industrial Crops and Products, 21(1), 129–144.

    Article  Google Scholar 

  • van Dam, J., Faaij, A. P. C., Hilber, J., Petruzzi, H., & Turkenburg, W. C. (2009). Large scale bioenergy production from soybeans and switchgrass in Argentina Part B. Environmental and socioeconomic impacts on a regional level. Renewable and Sustainable Energy Reviews, 13, 1697–1709.

    Google Scholar 

  • van Loo, S., & Koppejan, J. (2008). The handbook of biomass combustion and co-firing. London: Earthscan

    Google Scholar 

  • van Vuuren, D. P., van Vliet, J., & Stehfest, E. (2009). Future bio-energy potential under various natural constraints. Energy Policy, 37, 4220–4230.

    Article  Google Scholar 

  • von Braun, J. (2014). Bioeconomy and sustainable development – Dimensions. Ruralia, 21(3), 6–9.

    Google Scholar 

  • Weisz, R., Crozier, C. R., & Heiniger, R. W. (2001). Optimizing nitrogen application timing in no-till soft red winter wheat. Agronomy Journal, 93, 435–442.

    Article  Google Scholar 

  • Wicke, B., Dornburg, V., Junginger, M., & Faaij, A. (2008). Different palm oil production systems for energy purposes and their greenhouse gas implications. Biomass and Bioenergy, 32, 1322–1337.

    Article  Google Scholar 

  • Wicke, B., van der Hilst, F., & Daioglou, V. (2014, April 29). Model collaboration for the improved assessment of biomass supply, demand, and impacts. GCB Bioenergy, Article first published online. doi:10.1111/gcbb.12176.

  • Wijffels, R. H., & Barbosa, M. J. (2010). An outlook on microalgal biofuels. Science, 13, 796–799.

    Article  Google Scholar 

  • Wilcove, D. S., & Koh, L. P. (2010). Addressing the threats to biodiversity from oil palm agriculture. Biodiversity and Conservation, 19, 999–1007.

    Article  Google Scholar 

  • Winkler, B., Lemke, S., Ritter, J., & Lewandowski, I. (2016). Integrated assessment of renewable energy potential: Approach and application in rural South Africa. Environmental Innovation and Societal Transitions. doi:10.1016/j.eist.2016.10.002.

  • Wolters, V., Isselstein, J., Stützel, H., et al. (2014). Nachhaltige ressourceneffiziente Erhöhung der Flächenproduktivität: Zukunftsoptionen der deutschen Agrarökosystemforschung. Grundsatzpapier der DFG Senatskommission für Agrarökosystemforschung. Journal für Kulturpflanzen, 6, 225–236.

    Google Scholar 

  • Yengoh, G. T., & Ardö, J. (2014). Crop yield gaps in cameroon. Ambio, 43, 175–190.

    Article  Google Scholar 

  • Zhu, X.-G., Long, S. P., & Ort, D. R. (2010). Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 61, 235–261.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Lewandowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lewandowski, I. (2017). Increasing Biomass Production to Sustain the Bioeconomy. In: Dabbert, S., Lewandowski, I., Weiss, J., Pyka, A. (eds) Knowledge-Driven Developments in the Bioeconomy. Economic Complexity and Evolution. Springer, Cham. https://doi.org/10.1007/978-3-319-58374-7_10

Download citation

Publish with us

Policies and ethics