Skip to main content

Comparative Aspects of CgA-Derived Peptides in Cardiac Homeostasis

  • Chapter
  • First Online:
Chromogranins: from Cell Biology to Physiology and Biomedicine

Part of the book series: UNIPA Springer Series ((USS))

  • 303 Accesses

Abstract

This chapter is an overview of the cardiotropic actions of the Chromogranin A-derived peptides, vasostatins and catestatin on the isolated and perfused eel (Anguilla anguilla) and frog (Rana esculenta) hearts, used as paradigms of fish and amphibian hearts. Our studies highlight important cardiotropic features of the two peptides both at basal (negative inotropism) and stimulated (anti-adrenergic effect: eel and frog; anti-endothelin action: frog) conditions. In addition, catestatin positively modulates the Frank-Starling response both in eel and frog hearts. Overall, the comparison of vasostatins and catestatin-mediated role in cardiac homeostasis of fish and amphibians illustrates aspects of uniformity and species specific differences in the mechanism of action of the peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Akt:

Protein kinase B

ANP:

Atrial natriuretic peptide

bCgA4–16:

bovine CgA4–16

bCgA47–66:

bovine CgA47–66

CA:

Catecholamines

CgA:

Chromogranin A

CgA1–40SH:

CgA1–40 without an intact disulfide bridge

CgA1–40SS:

CgA1–40 with an intact disulfide bridge

CST:

Catestatin

EE:

Endocardial endothelium

eNOS:

Endothelial nitric oxide synthase

ET-1:

Endothelin-1

ETAR:

Endothelin-1 A subtype receptor

ETBR:

Endothelin-1 B subtype receptor

fCgA4–16:

frog CgA4–16

fCgA47–66:

frog CgA47–66

ISO:

Isoproterenol

NO:

Nitric Oxide

NOS:

Nitric Oxide Synthase

PI3K:

Phosphatidyl 3-kinase

PKG:

Protein Kinase G

PLN:

Phospholamban

PTx:

Pertussis toxin

SERCA2a:

Sarcoplasmic Reticulum Ca2+−ATPase

VS-1:

Vasostatin 1 (CgA1–76)

VS-2:

Vasostatin 2 (CgA1–113)

VSs:

Vasostatins

W7:

N-(6-aminohexil)-5-chloro-1-naphthalenesulfonamide

References

  • Aardal S, Helle KB (1992) The vasoinhibitory activity of bovine chromogranin A fragment (vasostatin) and its independence of extracellular calcium in isolated segments of human blood vessels. Regul Pept 41:9–18

    Article  CAS  PubMed  Google Scholar 

  • Aardal S, Helle KB, Elsayed S, Reed RK, Serck-Hanssen G (1993) Vasostatins, comprising the N-terminal domain of chromogranin A, suppress tension in isolated human blood vessel segments. J Neuroendocrinol 5:405–412

    Article  CAS  PubMed  Google Scholar 

  • Ai T, Horie M, Obayashi K, Sasayama S (1998) Accentuated antagonism by angiotensin II on guinea-pig cardiac L-type Ca-currents enhanced by b-adrenergic stimulation. Eur J Phys 436:168–174

    Article  CAS  Google Scholar 

  • Angelone T, Quintieri AM, Brar BK, Limchaiyawat PT, Tota B, Mahata SK, Cerra MC (2008) The antihypertensive chromogranin a peptide catestatin acts as a novel endocrine/paracrine modulator of cardiac inotropism and lusitropism. Endocrinol 149:4780–4793

    Article  Google Scholar 

  • Angelone T, Quintieri AM, Pasqua T, Filice E, Cantafio P, Scavello F, Rocca C, Mahata SK, Gattuso A, Cerra MC (2015) The NO stimulator, Catestatin, improves the Frank-Starling response in normotensive and hypertensive rat hearts. Nitric Oxide 50:10–19

    Article  CAS  PubMed  Google Scholar 

  • Banks P, Helle K (1965) The release of protein from the stimulated adrenal medulla. Biochem J 97:40C–41C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkatullah SC, Curry WJ, Johnston CF, Hutton JC, Buchanan KD (1997) Ontogenetic expression of chromogranin A and its derived peptides, WE-14 and pancreastatin, in the rat neuroendocrine system. Histochem Cell Biol 107:251–257

    Article  CAS  PubMed  Google Scholar 

  • Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SR (2011) The extended granin family: structure, function, and biomedical implications. Endocr Rev 32:755–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas N, Curello E, O’Connor DT, Mahata SK (2010) Chromogranin/secretogranin proteins in murine heart: myocardial production of chromogranin A fragment catestatin (Chga(364–384)). Cell Tissue Res 342:353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28:89–94

    Article  PubMed  Google Scholar 

  • Brekke JF, Osol GJ, Helle KB (2002) N-terminal chromogranin derived peptides as dilators of bovine coronary resistance arteries. Regul Pept 105:93–100

    Article  CAS  PubMed  Google Scholar 

  • Cappello S, Angelone T, Tota B, Pagliaro P, Penna C, Rastaldo R, Corti A, Losano G, Cerra MC (2007) Human recombinant chromogranin A-derived vasostatin-1 mimics preconditioning via an adenosine/nitric oxide signalling mechanism. Am J Physiol Heart Circ Physiol 293:H719–H727

    Article  CAS  PubMed  Google Scholar 

  • Cerra MC, De Iuri L, Angelone T, Corti A, Tota B (2006) Recombinant N-terminal fragments of chromogranin-A modulate cardiac function of the Langendorff-perfused rat heart. Basic Res Cardiol 101:43–52

    Article  CAS  PubMed  Google Scholar 

  • Corti A, Mannarino C, Mazza R, Colombo B, Longhi R, Tota B (2002) Vasostatin exert negative inotropism in the working heart of the frog. Ann N Y Acad Sci 971:362–365

    Article  CAS  PubMed  Google Scholar 

  • Corti A, Mannarino C, Mazza R, Angelone T, Longhi R, Tota B (2004) Chromogranin A N-terminal fragments vasostatins-1 and the synthetic CgA 7–57 peptide act as cardiostatins on the isolated working frog heart. Gen Comp Endocrinol 136:217–224

    Article  CAS  PubMed  Google Scholar 

  • Deftos LJ, Björnsson BT, Burton DW, O’Connor DT, Copp DH (1987) Chromogranin A is present in and released by fish endocrine tissue. Life Sci 40:2133–2136

    Article  CAS  PubMed  Google Scholar 

  • Fung MM, Salem RM, Mehtani P, Thomas B, Lu CF, Perez B, Rao F, Stridsberg M, Ziegler MG, Mahata SK, O’Connor DT (2010) Direct vasoactive effects of the chromogranin A (CHGA) peptide catestatin in humans in vivo. Clin Exp Hypertens 32:278–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garofalo F, Parisella ML, Amelio D, Tota B, Imbrogno S (2009) Phospholamban S-nitrosylation modulates Starling response in fish heart. Proc Biol Sci 276:4043–4052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gattuso A, Mazza R, Pellegrino D, Tota B (1999) Endocardial endothelium mediates luminal ACh-NO signaling in isolated frog heart. Am J Phys 276:H633–H641

    CAS  Google Scholar 

  • Glattard E, Angelone T, Strub JM, Corti A, Aunis D, Tota B, Metz-Boutigue MH, Goumon Y (2006) Characterization of natural vasostatin containing peptides in rat heart. FEBS J 273:3311–3321

    Article  CAS  PubMed  Google Scholar 

  • Helle KB, Marley PD, Angeletti RH, Aunis D, Galindo E, Small DH, Livett BG (1993) Chromogranin A: secretion of processed products from the stimulated retrogradely perfused bovine adrenal gland. J Neuroendocrinol 5:413–420

    Article  CAS  PubMed  Google Scholar 

  • Helle KB, Metz-Boutigue MH, Aunis D (2001) Chromogranin A as a calcium-binding precursor for a multitude of regulatory peptides for immune, endocrine and metabolic system. Curr Med Chem 1:119–140

    CAS  Google Scholar 

  • Helle KB, Corti A, Metz-Boutigue MH, Tota B (2007) The endocrine role for chromogranin A: a prohormone for peptides with regulatory properties. Cell Mol Life Sci 64:2863–2886

    Article  CAS  PubMed  Google Scholar 

  • Herrero CJ, Alés E, Pintado AJ, López MG, García-Palomero E, Mahata SK, O’Connor DT, García AG, Montiel C (2002) Modulatory mechanism of the endogenous peptide catestatin on neuronal nicotinic acetylcholine receptors and exocytosis. J Neurosci 22:377–388

    CAS  PubMed  Google Scholar 

  • Iacangelo A, Affolter HU, Eiden LE, Herbert E, Grimes M (1986) Bovine chromogranin A sequence and distribution of its messenger RNA in endocrine tissues. Nature 323:82–86

    Article  CAS  PubMed  Google Scholar 

  • Imbrogno S, De Iuri L, Mazza R, Tota B (2001) Nitric oxide modulates cardiac performance in the heart of Anguilla anguilla. J Exp Biol 204:1719–1727

    CAS  PubMed  Google Scholar 

  • Imbrogno S, Angelone T, Corti A, Adamo C, Helle KB, Tota B (2004) Influence of vasostatins, the chromogranin A-derived peptides, on the working heart of the eel (Anguilla anguilla): negative inotropy and mechanism of action. Gen Comp Endocrinol 139:20–28

    Article  CAS  PubMed  Google Scholar 

  • Imbrogno S, Garofalo F, Cerra MC, Mahata SK, Tota B (2010) The catecholamine release-inhibitory peptide catestatin (chromogranin A344–363) modulates myocardial function in fish. J Exp Biol 213:3636–3643

    Article  CAS  PubMed  Google Scholar 

  • Jean-François F, Castano S, Desbat B, Odaert B, Roux M, Metz-Boutigue MH, Dufourc EJ (2008) Aggregation of cateslytin beta-sheets on negatively charged lipids promotes rigid membrane domains. A new mode of action for antimicrobial peptides? Biochemistry 47:6394–6402

    Article  PubMed  Google Scholar 

  • Koeslag JH, Saunders PT, Wessels JA (1999) The chromogranins and the counterregulatory hormones: do they make homeostatic sense? J Physiol 517:643–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koshimizu H, Cawley NX, Yergy AL, Loh YP (2011) Role of pGlu-Serpinin, a novel chromogranin A-derived peptide in inhibition of cell death. J Mol Neurosci 45:294–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraszewski S, Drabik D, Langner M, Ramseyer C, Kembubpha S, Yasothornsrikul S (2015) A molecular dynamics study of catestatin docked on nicotinic acetylcholine receptors to identify amino acids potentially involved in the binding of chromogranin A fragments. Phys Chem Chem Phys 17:17454–17460

    Article  CAS  PubMed  Google Scholar 

  • Krüger PG, Mahata SK, Helle KB (2003) Catestatin (CgA344–364) stimulates rat mast cell release of histamine in a manner comparable to mastoparan and other cationic charged neuropeptides. Regul Pept 114:29–35

    Article  PubMed  Google Scholar 

  • Krylova MI (2007) Chromogranin A: immunocytochemical localization in secretory granules of frog atrial cardiomyocytes. Tsitologiia 49:538–543

    CAS  PubMed  Google Scholar 

  • Lugardon K, Chasserot-Golaz S, Kieffer AE, Maget-Dana R, Nullans G, Kieffer B, Aunis D, Metz-Boutigue MH (2001) Structural and biological characterizationof chromofungin, the antifungal chromogranin A-(47 – 66)-derived peptide. J Biol Chem 276:35875–35882

    Article  CAS  PubMed  Google Scholar 

  • Lugardon K, Chasserot-Golaz S, Kieffer AE, Maget-Dana R, Nullans G, Kieffer B, Aunis D, Metz-Boutigue MH (2002) Structural and biological characterization of chromofungin, the antifungal chromogranin A (47–66)-derived peptide. Ann N Y Acad Sci 971:359–361

    Article  CAS  PubMed  Google Scholar 

  • Maget-Dana R, Metz-Boutigue MH, Helle KB (2002) The N-terminal domain of chromogranin A (CgA1–40) interacts with monolayers of membrane lipids of fungal and mammalian compositions. Ann N Y Acad Sci 971:352–354

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra NR, O’Connor DT, Vaingankar SM, Sinha Hikim AP, Mahata M, Ray S, Staite E, Wu H, Gu Y, Dalton N et al (2005) Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest 115:1942–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahata SK, O’Connor DT, Mahata M, Yoo SH, Taupenot L, Wu H, Gill BM, Parmer RJ (1997) Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Investig 100:1623–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahata SK, Mahata M, Parmer RJ, O’Connor DT (1999) Desensitization of catecholamine release: the novel catecholamine release-inhibitory peptide catestatin (chromogranin A344–364) acts at the receptor to prevent nicotinic cholinergic tolerance. J Biol Chem 274:2920–2928

    Article  CAS  PubMed  Google Scholar 

  • Mahata SK, Mahapatra NR, Mahata M, Wang TC, Kennedy BP, Ziegler MG, O’Connor DT (2003) Catecholamine secretory vesicle stimulustranscription coupling in vivo. Demonstration by a novel transgenic promoter/photoprotein reporter and inhibition of secretion and transcription by the chromogranin A fragment catestatin. J Biol Chem 278:32058–32067

    Article  CAS  PubMed  Google Scholar 

  • Mahata SK, Mahata M, Wen G, Wong WB, Mahapatra NR, Hamilton BA, O’Connor DT (2004) The catecholamine release-inhibitory ‘catestatin’ fragment of chromogranin a: naturally occurring human variants with different potencies for multiple chromaffin cell nicotinic cholinergic responses. Mol Pharmacol 66:1180–1191

    Article  CAS  PubMed  Google Scholar 

  • Mazza R, Mannarino C, Imbrogno S, Barbieri SF, Adamo C, Angelone T, Corti A, Tota B (2007) Crucial role of cytoskeleton reorganization in the negative inotropic effect of chromogranin A-derived peptides in eel and frog hearts. Regul Pept 138:145–151

    Article  CAS  PubMed  Google Scholar 

  • Mazza R, Gattuso A, Mannarino C, Brar BK, Barbieri SF, Tota B, Mahata SK. Catestatin (chromogranin A344–364 is a novel cardiosuppressive agent, inhibition of isoproterenol and endothelin signaling in the frog heart. Am J Physiol Heart Circ Physiol. 2008;295:H113–H122.

    Google Scholar 

  • Mazza R, Angelone T, Pasqua T, Gattuso A (2010) Physiological evidence for 3-adrenoceptor in frog (Rana esculenta) heart. Gen Comp Endocrinol 169:151–157

    Article  CAS  PubMed  Google Scholar 

  • Mazza R, Pasqua T, Gattuso A (2012) Cardiac heterometric response: the interplay between Catestatin and nitric oxide deciphered by the frog heart. Nitric Oxide 27:40–49

    Article  CAS  PubMed  Google Scholar 

  • Mazza R, Pasqua T, Cerra MC, Angelone T, Gattuso A (2013) Akt/eNOS signaling and PLN S-sulfhydration are involved in H2Sdependent cardiac effects in frog and rat. Am J Physiol Regul Integr Comp Physiol 305:R443–R451

    Article  CAS  PubMed  Google Scholar 

  • Mazza R, Tota B, Gattuso A (2015) Cardio-vascular activity of catestatin: interlocking the puzzle pieces. Curr Med Chem 22:292–230

    Article  CAS  PubMed  Google Scholar 

  • Metz-Boutigue MH, Garcia-Sablone P, Hogue-Angeletti R, Aunis D (1993) Intracellular and extracellular processing of chromogranin A. Determination of cleavage sites. Eur J Biochem 217:247–257

    Article  CAS  PubMed  Google Scholar 

  • O’Connor DT, Kailasam MT, Kennedy BP, Ziegler MG, Yanaihara N, Parmer RJ (2002) Early decline in the catecholamine release-inhibitory peptide catestatin in humans at genetic risk of hypertension. J Hypertens 20:1335–1345

    Article  PubMed  Google Scholar 

  • Penna C, Tullio F, Perrelli MG, Mancardi D, Pagliaro P (2012) Cardioprotection against ischemia/reperfusion injury and chromogranin A-derived peptides. Curr Med Chem 19:4074–4085

    Article  CAS  PubMed  Google Scholar 

  • Peterson JB, Nelson DL, Ling E, Angeletti RH (1987) Chromogranin A-like proteins in the secretory granules of a protozoan, paramecium tetraurelia. J Biol Chem 262:17264–17267

    CAS  PubMed  Google Scholar 

  • Pieroni M, Corti A, Tota B, Curnis F, Angelone T, Colombo B, Cerra MC, Bellocci F, Crea F, Maseri A (2007) Myocardial production of chromogranin A in human heart: a new regulatory peptide of cardiac function. Eur Heart J 28:1117–1127

    Article  CAS  PubMed  Google Scholar 

  • Prendergast BD, Sagach VF, Shah AM (1997) Basal release of nitric oxide augments the Frank-Starling response in the isolated heart. Circulation 96:1320–1329

    Article  CAS  PubMed  Google Scholar 

  • Rao F, Wen G, Gayen JR, Das M, Vaingankar SM, Rana BK, Mahata M, Kennedy BP, Salem RM, Stridsberg M, Abel K, Smith DW, Eskin E, Schork NJ, Hamilton BA, Ziegler MG, Mahata SK, O’Connor DT (2007) Catecholamine release-inhibitory peptide catestatin (chromograninA 352– 372): naturally occurring amino acid variant Gly364Ser causes profound changes in human autonomic activity and alters risk for hypertension. Circulation 115:2271–2281

    Article  CAS  PubMed  Google Scholar 

  • Reinecke M, Höög A, Ostenson CG, Efendic S, Grimelius L, Falkmer S (1991) Phylogenetic aspects of pancreastatin- and chromogranin-like immunoreactive cells in the gastro-entero-pancreatic neuroendocrine system of vertebrates. Gen Comp Endocrinol 83:167–182

    Article  CAS  PubMed  Google Scholar 

  • Seternes T, Oynebraten I, Sorensen K, Smedsrod B (2001) Specific endocytosis and catabolism in the scavenger endothelial cells of cod (Gadus morhua L.) generate high-energy metabolites. J Exp Biol 204:1537–1546

    CAS  PubMed  Google Scholar 

  • Shiels HA, White E (2008) The Frank–Starling mechanism in vertebrate cardiac myocytes. J Exp Biol 211:2005–2011

    Article  PubMed  Google Scholar 

  • Smart D, Johnston CF, Curry WJ, Shaw C, Halton DW, Fairweather I, Buchanan KD (1992) Immunoreactivity to two specific regions of chromogranin A in the nervous system of Ascaris suum: an immunocytochemical study. Parasitol Res 78:329–335

    Article  CAS  PubMed  Google Scholar 

  • Steiner HJ, Weiler R, Ludescher C, Schmid KW, Winkler H (1990) Chromogranins A and B are co-localized with atrial natriuretic peptides in secretory granules of rat heart. J Histochem Cytochem 38:845–850

    Article  CAS  PubMed  Google Scholar 

  • Strub JM, Goumon Y, Lugardon K, Capon C, Lopez M, Moniatte M, Van Dorsselaer A, Aunis D, Metz-Boutigue MH (1996) Antibacterial activity of glycosylated and phosphorylated chromogranin A-derived peptide 173–194 from bovine adrenal medullary chromaffin granules. J Biol Chem 271:28533–28540

    Article  CAS  PubMed  Google Scholar 

  • Sys SU, Pellegrino D, Mazza R, Gattuso A, Andries LJ, Tota B (1997) Endocardial endothelium in the avascular heart of the frog: morphology and role of nitric oxide. J Exp Biol 200:3109–3118

    CAS  PubMed  Google Scholar 

  • Tatemoto K, Efendić S, Mutt V, Makk G, Feistner GJ, Barchas JD (1986) Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature 324:476–478

    Article  CAS  PubMed  Google Scholar 

  • Tota B, Mazza R, Angelone T, Nullans G, Metz-Boutigue MH, Aunis D, Helle KB (2003) Peptides from the N-terminal domain of chromogranin A (vasostatins) exert negative inotropic effects in the isolated frog heart. Regul Pept 114:91–99

    Article  PubMed  Google Scholar 

  • Tota B, Imbrogno S, Mannarino C, Mazza R (2004) Vasostatins and negative inotropy in vertebrate hearts. Curr Med Chem Immun Endoc Metab Agents 4:195–201

    Article  CAS  Google Scholar 

  • Tota B, Quintieri AM, Di Felice V, Cerra MC (2007) New biological aspects of chromogranin A-derived peptides: focus on vasostatins. Comp Biochem Physiol A Physiol 147:11–18

    Article  Google Scholar 

  • Trandaburu T, Ali SS, Trandaburu I (1999) Granin proteins (chromogranin A and secretogranin II C23–3 and C26–3) in the intestine of reptiles. Ann Anat 81:261–268

    Article  Google Scholar 

  • Vesely DL (2006) Which of the cardiac natriuretic peptides is most effective for the treatment of congestive heart failure, renal failure and cancer? Clin Exp Pharmacol Physiol 33:169–176

    Article  CAS  PubMed  Google Scholar 

  • Vesely DL, Douglass MA, Dietz JR, Gower WR Jr, McCormick MT, Rodriguez-Paz G, Schocken DD (1994) Three peptides from the atrial natriuretic factor prohormone amino terminus lower blood pressure and produce diuresis, natriuresis, and/or kaliuresis in humans. Circulation 90:1129–1140

    Article  CAS  PubMed  Google Scholar 

  • Weiergraber M, Pereverzev A, Vajna R, Henry M, Schramm M, Nastainczyk W, Grabsch H, Schneider T (2000) Immunodetection of alpha1E voltagegated Ca(2+) channel in chromogranin-positive muscle cells of rat heart, and in distal tubules of human kidney. J Histochem Cytochem 48:807–819

    Article  CAS  PubMed  Google Scholar 

  • Wen G, Mahata SK, Cadman P, Mahata M, Ghosh S, Mahapatra NR, Rao F, Stridsberg M, Smith DW, Mahboubi P, Schork NJ, O’Connor DT, Hamilton BA (2004) Both rare and common polymorphisms contribute functional variation at CHGA, a regulator of catecholamine physiology. Am J Hum Genet 74:197–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonsina Gattuso PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gattuso, A., Imbrogno, S., Mazza, R. (2017). Comparative Aspects of CgA-Derived Peptides in Cardiac Homeostasis. In: Angelone, T., Cerra, M., Tota, B. (eds) Chromogranins: from Cell Biology to Physiology and Biomedicine. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-319-58338-9_9

Download citation

Publish with us

Policies and ethics