Skip to main content

Flower-Related Fossils from the Jurassic

  • Chapter
  • First Online:
  • 782 Accesses

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

The Jurassic is an important period for the origin of angiosperms. Several reproductive organs have been excavated from the Jurassic strata in western Liaoning and Inner Mongolia, China. Schmeissneria, Xingxueanthus, Solaranthus, Euanthus, Juraherba and Yuhania are three female or bisexual organs of plants found in the Middle Jurassic in China and the Early Jurassic in Germany. All of them demonstrate the existence of enclosed ovule in the organ, satisfying the criterion for angiosperms. Among them, Schmeissneria is seen in both the Middle Jurassic in China and Early Jurassic in Europe, and thus sheds more light on the origin and early evolution of angiosperms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson JM, Anderson HM (2003) Heyday of the gymnosperms: systematics and biodiversity of the late Triassic Molteno fructifications. National Botanical Institute, Pretoria

    Google Scholar 

  • APG (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Aulbach-Smith CA, Herr JM (1984) Development of the ovule and female gametophyte in Eustachys petraea and E. glauca (Poaceae). Am J Bot 71:427–438

    Article  Google Scholar 

  • Arditti J, Ghani AKA (2000) Numerical and physical properties of orchid seeds and their biological implications. New Phyto Antiquity of the angios l 145:367–421

    Article  Google Scholar 

  • Barbacka M, Boka K (2000) The stomatal ontogeny and structure of the Liassic pteridosperm Sagenopteris (Caytoniales) from Hungary. Int J Plant Sci 161:149–157

    Article  Google Scholar 

  • Bateman RM, Hilton J, Rudall PJ (2006) Morphological and molecular phylogenetic context of the angiosperms: contrasting the ‘top-down’ and ‘bottom-up’ approaches used to infer the likely characteristics of the first flowers. J Exp Bot 57:3471–3503

    Article  Google Scholar 

  • Bell CD, Soltis DE, Soltis PS (2005) The age of the angiosperms: a molecular timescale without a clock. Evolution 59:1245–1258

    Article  Google Scholar 

  • Berridge EM (1911) On some points of resemblance between gnetalean and bennettitean seeds. New Phytol 10:140–144

    Article  Google Scholar 

  • Bierhorst DW (1971) Morphology of vascular plants. Macmillan, New York

    Google Scholar 

  • Biswas C, Johri BM (1997) The gymnosperms. Springer, Berlin

    Book  Google Scholar 

  • Carlquist S (1996) Wood anatomy of primitive angiosperms: new perspectives and syntheses. In: Flowering plant origin, evolution & phylogeny. Springer, Dordrecht, pp 68–90

    Google Scholar 

  • Cevallos-Ferriz SRS, Martínez-Cabrera HI, Calvillo-Canadell L (2014) Ruprechtia in the Miocene El Cien Formation, Baja California Sur, Mexico. IAWA J 35:430–443

    Article  Google Scholar 

  • Chamberlain CJ (1919) The living cycads. Hafner Publishing, New York

    Google Scholar 

  • Chamberlain CJ (1920) The living cycads and phylogeny of seed plants. Am J Bot 7:146–153

    Article  Google Scholar 

  • Chamberlain CJ (1957) Gymnosperms, structure and evolution. Johnson Reprint, New York

    Google Scholar 

  • Chang S-C, Zhang H, Hemming SR, Mesko GT, Fang Y (2014) 40Ar/39Ar age constraints on the Haifanggou and Lanqi formations: when did the first flowers bloom? Geol Soc Lond Sp Publ 378:277–284

    Article  Google Scholar 

  • Chang S-C, Zhang H, Renne PR, Fang Y (2009) High-precision 40Ar/39Ar age constraints on the basal Lanqi Formation and its implications for the origin of angiosperm plants. Earth Planet Sci Lett 279:212–221

    Article  Google Scholar 

  • Chase MW (2004) Monocot relationships: an overview. Am J Bot 91:1645–1655

    Article  Google Scholar 

  • Chaw S-M, Chang C-C, Chen H-L, Li W-H (2004) Dating the Monocot-Dicot divergence and the origin of core Eudicots using whole chloroplast genomes. J Mol Evol 58:424–441

    Article  Google Scholar 

  • Cornet B (1989a) Late Triassic angiosperm-like pollen from the Richmond rift basin of Virginia, USA. Paläontographica B 213:37–87

    Google Scholar 

  • Cornet B (1989b) The reproductive morphology and biology of Sanmiguelia lewisii, and its bearing on angiosperm evolution in the late Triassic. Evol Trends Plants 3:25–51

    Google Scholar 

  • Cornet B (1993) Dicot-like leaf and flowers from the Late Triassic tropical Newark Supergroup rift zone, U.S.A. Mod Biol 19:81–99

    Google Scholar 

  • Cornet B, Habib D (1992) Angiosperm-like pollen from the ammonite-dated Oxfordian (Upper Jurassic) of France. Rev Palaeobot Palynol 71:269–294

    Article  Google Scholar 

  • Crane PR (1986) The morphology and relationships of the Bennettitales. In: Spicer RA, Thomas BA (eds) Systematic and taxonomic approaches in palaeobotany. Clarendon Press, Oxford, pp 163–175

    Google Scholar 

  • Crane PR (1987) Vegetational consequences of the angiosperm diversification. In: Friis EM, Chaloner WG, Crane PR (eds) The origin of the angiosperms and their biological consequences. Cambridge University Press, Cambridge, pp 107–144

    Google Scholar 

  • Crane PR, Herendeen PS (2009) Bennettitales from the Grisethrope Bed (Middle Jurassic) at Cayton Bay, Yorkshire, UK. Am J Bot 96:284–295

    Article  Google Scholar 

  • Crane PR, Kenrick P (1997) Diverted development of reproductive organs: a source of morphological innovation in land plants. Plant Syst Evol 206:161–174

    Article  Google Scholar 

  • Cronquist A (1988) The evolution and classification of flowering plants. New York Botanical Garden, Bronx

    Google Scholar 

  • De Bodt S, Maere S, Van de Peer Y (2005) Genome duplication and the origin of angiosperms. Trends Ecol Evol 20:591–597

    Article  Google Scholar 

  • Delevoryas T (1982) Perspectives on the origin of cycads and cycadeoids. Rev Palaeobot Palynol 37:115–132

    Article  Google Scholar 

  • Delevoryas T (1991) Investigations of North American cycadeoids: Weltrichia and Williamsonia from the Jurasssic of Oaxaca, Mexico. Am J Bot 78:177–182

    Article  Google Scholar 

  • Delevoryas T (1993) Origin, evolution, and growth patterns of cycads. In: Stevenson DW, Norstog KJ (eds) The biology, structure, and systematics of the Cycadales, Proceedings of CYCAD 90, the second international conference on cycad biology. The Palm & Cycad Societies of Australia, pp 236–245

    Google Scholar 

  • Deng S, Yao Y, Ye D, Chen P, Jin F, Zhang Y, Xu K, Zhao Y, Yuan X, Zhang S (2003) Stratum introduction. Petroleum Industry Press, Beijing

    Google Scholar 

  • Deng S, Hilton J, Glasspool IJ, Dejax J (2014) Pollen cones and associated leaves from the Lower Cretaceous of China and a re-evaluation of Mesozoic male cycad cones. J Syst Palaeontol 12:1001–1023

    Article  Google Scholar 

  • Dilcher DL, Sun G, Ji Q, Li H (2007) An early infructescence Hyrcantha decussata (comb. nov.) from the Yixian Formation in northeastern China. Proc Natl Acad Sci USA 104:9370–9374

    Article  Google Scholar 

  • Doyle JA (1978) Origin of angiosperms. Annu Rev Ecol Syst 9:365–392

    Article  Google Scholar 

  • Doyle JA (2006) Seed ferns and the origin of angiosperms. J Torrey Bot Soc 133:169–209

    Article  Google Scholar 

  • Doyle JA (2008) Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower. Int J Plant Sci 169:816–843

    Article  Google Scholar 

  • Doyle JA (2012) Molecular and fossil evidence on the origin of angiosperms. Annu Rev Earth Planet Sci 40:301–326

    Article  Google Scholar 

  • Doyle JA, Endress PK (2000) Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. Int J Plant Sci 161:S121–S153

    Article  Google Scholar 

  • Doyle JA, Endress PK, Upchurch GR (2008) Early Cretaceous monocots: a phylogenetic evaluation. Acta Musei Nationalis Pragae 64:59–87

    Google Scholar 

  • Duan S (1998) The oldest angiosperm—a tricarpous female reproductive fossil from western Liaoning Province, NE China. Sci China Ser D Earth Sci 41:14–20

    Article  Google Scholar 

  • Eames AJ (1961) Morphology of the angiosperms. McGraw-Hill, New York

    Book  Google Scholar 

  • Edwards D (2003) Embryophytic sporophytes in the Rhynie and Windyeld cherts. Trans R Soc Edinb Earth Sci 94:397–410

    Article  Google Scholar 

  • Emberger L (1944) Les plantes fossils dans leurs rapports avec les végétaux, vivants. Boulevard Saint-Germain, Paris

    Google Scholar 

  • Endress PK, Doyle JA (2009) Reconstructing the ancestral angiosperm flower and its initial specializations. Am J Bot 96:22–66

    Article  Google Scholar 

  • Endress PK, Igersheim A (2000) Gynoecium structure and evolution in basal angiosperms. Int J Plant Sci 161:S211–S223

    Article  Google Scholar 

  • Engler A, Prantl K (1889) Die natuerlichen Pflanzenfamilien, II. Verlag von Wilhelm Engelmann, Leipizig

    Google Scholar 

  • Eriksson O (2008) Evolution of seed size and biotic seed dispersal in angiosperms: paleoecological and neoecological evidence. Int J Plant Sci 169:863–870

    Article  Google Scholar 

  • Eriksson O, Friis EM, Pedersen KR, Crane PR (2000) Seed size and dispersal systems of early Cretaceous angiosperms from Famalicao, Portugal. Int J Plant Sci 161:319–329

    Article  Google Scholar 

  • Fagerlind F (1946) Strobilus und Bluete von Gnetum und die Moglichkeit aus ihrer Structur den Bluetenbau der Angiospermen zu deuten. Arkiv fur Botanik 33A:1–57

    Google Scholar 

  • Fahn A (1982) Plant anatomy. Pergamon Press, Oxford

    Google Scholar 

  • Feild TS, Arens NC (2007) The ecophysiology of early angiosperms. Plant Cell Environ 30:291–309

    Article  Google Scholar 

  • Feild TS, Arens NC, Dawson TE (2003) The ancestral ecology of angiosperms: emerging perspectives from extant basal lineages. Int J Plant Sci 164:S129–S142

    Article  Google Scholar 

  • Friedman WE, Ryerson KC (2009) Reconstructing the ancestral female gametophyte of angiosperms: insights from Amborella and other ancient lineages of flowering plants. Am J Bot 96:129–143

    Article  Google Scholar 

  • Friis EM, Crepet WL (1987) Time of appearance of floral features. In: Friis EM, Chaloner WG, Crane PR (eds) The origin of the angiosperms and their biological consequences. Cambridge University Press, Cambridge, pp 145–179

    Google Scholar 

  • Friis EM, Pedersen KR (1996) Eucommiitheca hirsuta, a new pollen organ with Eucommiidites pollen from the Early Cretaceous of Portugal. Grana 35:104–112

    Article  Google Scholar 

  • Friis EM, Doyle JA, Endress PK, Leng Q (2003) Archaefructus—angiosperm precursor or specialized early angiosperm? Trends Plant Sci 8:S369–S373

    Article  Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2005) When earth started blooming: insights from the fossil record. Curr Opin Plant Biol 8:5–12

    Article  Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2006) Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeogr Palaeoclimatol Palaeoecol 232:251–293

    Article  Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2009a) Early Cretaceous mesofossils from Portugal and eastern North America related to the Bennettitales-Erdtmanithecales-Gnetales group. Am J Bot 96:252–283

    Article  Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2010) Diversity in obscurity: fossil flowers and the early history of angiosperms. Philos Trans R Soc B 365:369–382

    Article  Google Scholar 

  • Frohlich MW, Chase MW (2007) After a dozen years of progress the origin of angiosperms is still a great mystery. Nature 450:1184–1189

    Article  Google Scholar 

  • Frohlich MW, Parker DS (2000) The mostly male theory of flower evolutionary origins: from genes to fossils. Syst Bot 25:155–170

    Article  Google Scholar 

  • Gandolfo MA, Nixon KC, Crepet WL, Stevenson DW, Friis EM (1998) Oldest known fossils of monocotyledons. Nature 394:532–533

    Article  Google Scholar 

  • Goldschmidt EE, Leshem B (1971) Style abscission in the citron (Citrus medica L.) and other Citrus species: morphology, physiology, and chemical control with picloram. Am J Bot 58:14–23

    Article  Google Scholar 

  • Gothan W (1914) Die unterliassische (rhätische) Flora der Umgegend von Nürnberg. Abh Nat Ges Nürnberg 19:91–186

    Google Scholar 

  • Gothan W, Weyland H (1954) Lehrbuch der Paläobotanik. Akadmie-Verlag, Berlin

    Google Scholar 

  • Gradstein SR, Churchhill SP, Salazar-Allen N (2001) Guide to the bryophytes of tropical America. New York Botanical Garden Press, Bronx

    Google Scholar 

  • Gu A-G, Lu J-M, Wang L-J (1993) Evolutional morphology of vascular plants. Jilin Science Technology Press, Changchun

    Google Scholar 

  • Han G, Fu X, Liu Z-J, Wang X (2013) A new angiosperm genus from the lower Cretaceous Yixian Formation, Western Liaoning, China. Acta Geol Sin 87:916–925

    Article  Google Scholar 

  • Han G, Liu Z-J, Liu X, Mao L, Jacques FMB, Wang X (2016) A whole plant herbaceous angiosperm from the Middle Jurassic of China. Acta Geol Sin 90:19–29

    Article  Google Scholar 

  • Han G, Liu Z, Wang X (2017) A Dichocarpum-like angiosperm from the early Cretaceous of China. Acta Geol Sin 90:1–8

    Article  Google Scholar 

  • Harris TM (1933) A new member of the Caytoniales. New Phytol 32:97–114

    Article  Google Scholar 

  • Harris TM (1940) Caytonia. Ann Bot Lond 4:713–734

    Article  Google Scholar 

  • Harris TM (1941) Cones of extinct Cycadales from the Jurassic rocks of Yorkshire. Philos Trans R Soc Lond 231:75–98

    Article  Google Scholar 

  • Harris TM (1961) The fossil cycads. Palaeontology 4:313–323

    Google Scholar 

  • Harris TM (1964) Caytoniales, Cycadales & Pteridosperms. Trustees of the British Museum (Natural History), London

    Google Scholar 

  • Harris TM (1969) Bennettitales. Trustees of the British Museum (Natural History), London

    Google Scholar 

  • Harris TM, Miller J (1974) Czekanowskiales. Trustees of the British Museum (Natural History), London

    Google Scholar 

  • Harris TM, Millington W (1974) Ginkgoales. Trustees of the British Museum (Natural History), London

    Google Scholar 

  • Haupt AW (1953) Plant morphology. McGraw-Hill, New York

    Book  Google Scholar 

  • Heer O (1876) Beitraege zur fossilen Flora Spitzbergens. Kongl Svenska Vetenskaps-Akademiens Handlingar 14:1–141

    Google Scholar 

  • Heywood VH (ed) (1979) Flowering plants of the world. Oxford University Press, Oxford

    Google Scholar 

  • Hilu K (2010) When different genes tell a similar story: emergency of angiosperms. In: 8th European palaeobotany-palynology conference, Budapest, p 117

    Google Scholar 

  • Hochuli PA, Feist-Burkhardt S (2004) A boreal early cradle of angiosperms? angiosperm-like pollen from the Middle Triassic of the Barents Sea (Norway). J Micropalaeontol 23:97–104

    Article  Google Scholar 

  • Hochuli PA, Feist-Burkhardt S (2013) Angiosperm-like pollen and Afropollis from the Middle Triassic (Anisian) of the Germanic Basin (Northern Switzerland). Front Plant Sci 4:344

    Article  Google Scholar 

  • Hoffmann R (2003) Why buy that theory. Am Sci 91:9–11

    Article  Google Scholar 

  • Hou W, Yao Y, Zhang W, Ren D (2012) The earliest fossil flower bugs (Heteroptera: Cimicomorpha: Cimicoidea: Vetanthocoridae) from the Middle Jurassic of Inner Mongolia, China. Eur J Entomol 109:281–288

    Article  Google Scholar 

  • Hughes NF (1994) The enigma of angiosperm origins. Cambridge University Press, Cambridge

    Google Scholar 

  • Igersheim A, Buzgo M, Endress PK (2001) Gynoecium diversity and systematics in basal monocots. Bot J Linn Soc 136:1–65

    Article  Google Scholar 

  • Jacobs BF, Kingston JD, Jacobs LL (1999) The origin of grass-dominated ecosystems. Ann Mo Bot Gard 86:590–643

    Article  Google Scholar 

  • Ji Q, Li H, Bowe M, Liu Y, Taylor DW (2004) Early Cretaceous Archaefructus eoflora sp. nov. with bisexual flowers from Beipiao, Western Liaoning, China. Acta Geol Sin 78:883–896

    Google Scholar 

  • Joshi AC (1938) The nature of the ovular stalk in Polygonaceae and some related families. Ann Bot 2:957–959

    Article  Google Scholar 

  • Judd WS, Campbell SC, Kellogg EA, Stevens PF (1999) Plant systematics: a phylogenetic approach. Sinauer, Sunderland, MA

    Google Scholar 

  • Keighery G (2004) Taxonomy of the Calytrix ecalycata complex (Myrtaceae). Nuytsia 15:261–268

    Google Scholar 

  • Kimura T, Ohana T, Zhao LM, Geng BY (1994) Pankuangia haifanggouensis gen. et sp. nov., a fossil plant with unknown affinity from the middle Jurassic Haifanggou Formation, western Liaoning, Northeast China. Bull Kitakyushu Mus Nat Hist 13:255–261

    Google Scholar 

  • Kirchner M (1992) Untersuchungen an einigen Gymnospermen der Fränkischen Rhät-Lias-Grenzschichten. Paläontographica B 224:17–61

    Google Scholar 

  • Kirchner M, Van Konijnenburg-Van Cittert JHA (1994) Schmeissneria microstachys (Prel, 1833) Kirchner et Van Konijnenburg-Van Cittert, comb. nov. and Karkenia haupymannii Kirchner et Van Konijnenburg-Van Cittert, sp. nov., plants with ginkgoalean affinities from the Liassic of Germany. Rev Palaeobot Palynol 83:199–215

    Article  Google Scholar 

  • Krassilov VA (1972) Mesozoic flora of Bureya River, Ginkgoales and Czekanowskiales. Nauka, Moskow

    Google Scholar 

  • Krassilov VA, Bugdaeva EV (1988) Gnetalean plants from the Jurassic of Ust-Balej, East Siberia. Rev Palaeobot Palynol 53:359–376

    Article  Google Scholar 

  • Krassilov VA, Bugdaeva VB (1999) An angiosperm cradle community and new proangiosperm taxa. Acta Palaeobot S2:111–127

    Google Scholar 

  • Kvacek J, Pacltov B (2001) Bayeritheca hughesii gen. et sp. nov., a new Eucommiidites-bearing pollen organ from the Cenomanian of Bohemia. Cretac Res 22:695–704

    Article  Google Scholar 

  • Labandeira CC, Wilf P, Johnson KR, Marsh F (2007) Guide to insect (and other) damage types on compressed plant fossils. Version 3.0. Smithsonian Institution, Washington, DC, p 25

    Google Scholar 

  • Leng Q, Friis EM (2003) Sinocarpus decussatus gen. et sp. nov., a new angiosperm with basally syncarpous fruits from the Yixian Formation of Northeast China. Plant Syst Evol 241:77–88

    Article  Google Scholar 

  • Leng Q, Friis EM (2006) Angiosperm leaves associated with Sinocarpus infructescences from the Yixian formation (Mid-Early Cretaceous) of NE China. Plant Syst Evol 262:173–187

    Article  Google Scholar 

  • Leslie AB, Boyce CK (2012) Ovule function and the evolution of angiosperm reproductive innovations. Int J Plant Sci 173:640–648

    Article  Google Scholar 

  • Liu Z-J, Wang X (2016) A perfect flower from the Jurassic of China. Hist Biol 28:707–719

    Article  Google Scholar 

  • Liu Z-J, Wang X (2017) Yuhania: a unique angiosperm from the Middle Jurassic of Inner Mongolia, China. Hist Biol 29:431–441

    Article  Google Scholar 

  • Liu X-Q, Li C-S, Wang Y-F (2006) Plants of Leptostrobus Heer (Czekanowkiales) from the early Cretaceous and late Triassic of China, with discussion of the genus. J Integr Plant Biol 48:137–147

    Article  Google Scholar 

  • Lu A-M, Tang Y-C (2005) Consideration on some viewpoints in researches of the origin of angiosperms. Acta Phytotaxonomica Sin 43:420–430

    Article  Google Scholar 

  • Magallόn S (2014) A review of the effect of relaxed clock method, long branches, genes, and calibration in the estimation of angiosperm age. Bot Sci 92:1–22

    Article  Google Scholar 

  • Maout EL (1846) Atlas elementaire de botanique. Libraires des Scoietes Savantes, Paris

    Google Scholar 

  • Martens P (1971) Les gnetophytes. Gebrueder Borntraeger, Berlin

    Google Scholar 

  • Martin W, Gierl A, Saedler H (1989a) Angiosperm origins. Nature 342:132

    Article  Google Scholar 

  • Martin W, Gierl A, Saedler H (1989b) Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339:46–48

    Article  Google Scholar 

  • Melville R (1963) A new theory of the angiosperm flower: II. The androecium. Kew Bull 17:1–63

    Article  Google Scholar 

  • Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve en-igmatic relationships among basal angiosperms. Proc Natl Acad Sci USA 104:19363–19368

    Article  Google Scholar 

  • Na Y, Sun C, Dilcher DL, Wang H, Li T, Li Y (2014) Nilssonipteris binggouensis sp. nov. (Bennettitales) from the Lower Cretaceous of northeast China. Int J Plant Sci 175:369–381

    Article  Google Scholar 

  • Nemejc F (1968) Paleobotanika III. Vydala Academia, 479 Nakladtelstvi Ceskoslovensk Akadmeie Ved, Praha

    Google Scholar 

  • Nixon KC, Crepet WL, Stevenson D, Friis EM (1994) A reevaluation of seed plant phylogeny. Ann Mo Bot Gard 81:484–533

    Article  Google Scholar 

  • Ogura Y (1972) Comparative anatomy of vegetative organs of the pteridophytes. Gebrueder Borntaeger, Berlin

    Google Scholar 

  • Pan G (1983) The Jurassic precursors of angiosperms from Yanliao region of North China and the origin of angiosperms. Chin Sci Bull 28:1520

    Google Scholar 

  • Pan G (1997) Juglandaceous plant (Pterocarya) from middle Jurassic of Yanliao region, north China. Acta Sci Nat Univ Sunyatseni 36:82–86

    Google Scholar 

  • Prasad V, Strömberg CAE, Leaché AD, Samant B, Patnaik R, Tang L, Mohabey DM, Ge S, Sahni A (2011) Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae. Nat Commun 2:480

    Article  Google Scholar 

  • Presl KB (1838) Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt. Sternberg KM Johann Spurny, Prag, pp 81–220

    Google Scholar 

  • Prynada VD (1962) Mesozoic flora of the East Siberia and Trans-Baikal area. Gosgeoltekhizdat, Moscow

    Google Scholar 

  • Puri V (1952) Placentation in angiosperms. Bot Rev 18:603–651

    Article  Google Scholar 

  • Ren Y, Chang H-L, Endress PK (2010) Floral development in Anemoneae (Ranunculaceae). Bot J Linn Soc 162:77–100

    Article  Google Scholar 

  • Retallack G, Dilcher DL (1981) Arguments for a glossopterid ancestry of angiosperms. Paleobiology 7:54–67

    Article  Google Scholar 

  • Reymanowna M (1973) The Jurassic flora from Grojec near Krakow in Poland, Part II: Caytoniales and the anatomy of Caytonia. Acta Palaeobot 14:46–87

    Google Scholar 

  • Roe JL, Nemhauser JL, Zambryski PC (1997) TOUSLED participates in apical tissue formation during gynoecium development in Arabidopsis. Plant Cell 9:335–353

    Article  Google Scholar 

  • Rothwell GW, Stockey RA (2002) Anatomically preserved Cycadeoidea (Cycadeoidaceae), with a reevaluation of systematic characters for the seed cones of Bennettitales. Am J Bot 89:1447–1458

    Article  Google Scholar 

  • Rothwell GW, Grauvogel-Stamm L, Mapes G (2000) An herbaceous fossil conifer: Gymnospermous ruderals in the evolution of Mesozoic vegetation. Palaeogeogr Palaeoclimatol Palaeoecol 156:139–145

    Article  Google Scholar 

  • Rothwell GW, Crepet WL, Stockey RA (2009) Is the anthophyte hypothesis alive and well? New evidence from the reproductive structures of Bennettitales. Am J Bot 96:296–322

    Article  Google Scholar 

  • Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7:1259–1269

    Article  Google Scholar 

  • Royer DL, Miller IM, Peppe DJ, Hickey LJ (2010) Leaf economic traits from fossils support a weedy habit for early angiosperms. Am J Bot 97:438–445

    Article  Google Scholar 

  • Rudall PJ, Sokoloff DD, Remizowa MV, Conran JG, Davis JI, Macfarlane TD, Stevenson DW (2007) Morphology of Hydatellaceae, an anomalous aquatic family recently recognized as an early-divergent angiosperm lineage. Am J Bot 94:1073–1092

    Article  Google Scholar 

  • Saarela JM, Rai HS, Doyle JA, Endress PK, Mathews S, Marchant AD, Briggs BG, Graham SW (2007) Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature 446:312–315

    Article  Google Scholar 

  • Sage TL, Hristova-Sarkovski K, Koehl V, Lyew J, Pontieri V, Bernhardt P, Weston P, Bagha S, Chiu G (2009) Transmitting tissue architecture in basal-relictual angiosperms: implications for transmitting tissue origins. Am J Bot 96:183–206

    Article  Google Scholar 

  • Sanderson MJ, Thorne JL, Wikström N, Bremer K (2004) Molecular evidence on plant divergence times. Am J Bot 91:1656–1665

    Article  Google Scholar 

  • Schenk A (1867) Die fossile Flora der Grenzschichten des Keupers und Lias Frankens. C.W. Kreidel’s Verlag, Wiesbaden

    Google Scholar 

  • Schenk A (1890) Paläophytologie. Druck und Verlag von R. Oldenbourg, München

    Google Scholar 

  • Schmeissner S, Hauptmann H (1993) Fossile Pflanzen aus den Rhaet-Lias-Uebergangs-Schichten des Kulmbach-Bayreuther Raumes Naturwissenschaftliche Gesellschaft Bayreuth Bericht XII:51–66

    Google Scholar 

  • Schweitzer H-J (1977) Die Räto-Jurassischen floren des Iran und Afghanistans. 4. Die Rätische zwitterblüte Irania hermphroditic nov. spec. und ihre bedeutung für die Phylogenie der angiospermen. Paläontographica B 161:98–145

    Google Scholar 

  • Schweitzer H-J, Kirchner M (1995) Die Rhaeto-Jurassischen Floren des Iran und Afghanistans. 8. Ginkgophyta. Paläontographica Abt B 237:1–58

    Google Scholar 

  • Scott DH (1962) Studies in fossil botany, Pteridophyta, vol I. Hafner Publishing, New York

    Google Scholar 

  • Simons RK (1973) Anatomical changes in abscission of reproductive structures. In: Kozlowski TT (ed) Shedding of plant parts. Academic Press, New York, pp 383–434

    Chapter  Google Scholar 

  • Singh H (1978) Embryology of gymnosperms. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Skinner DJ, Hill TA, Gasser CS (2004) Regulation of ovule development. Plant Cell 16:S32–S45

    Article  Google Scholar 

  • Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2006a) A classification for extant ferns. Taxon 55:705–731

    Article  Google Scholar 

  • Smith JJ, Hasiotis ST, Fritz WJ (2006b) Stratigraphy and sedimentology of the Upper Jurassic Morrison Formation, Dillon, Montana. In: Foster JR, Lucas SG (eds) Paleontology and geology of the Upper Jurassic Morrison formation. New Mexico Museum of Natural History and Science Bulletin, New Mexico

    Google Scholar 

  • Sokoloff DD, Remizowa MV, Macfarlane TD, Conran JG, Yadav SR, Rudall PJ (2013) Comparative fruit structure in Hydatellaceae (Nymphaeales) reveals specialized pericarp dehiscence in some early-divergent angiosperms with ascidiate carpels. Taxon 62:40–61

    Google Scholar 

  • Soltis DE, Soltis PS (2004) Amborella not a “basal angiosperm”? Not so fast. Am J Bot 91:997–1001

    Article  Google Scholar 

  • Soltis DE, Bell CD, Kim S, Soltis PS (2008) Origin and early evolution of angiosperms. Ann N Y Acad Sci 1133:3–25

    Article  Google Scholar 

  • Sporne KR (1971) The morphology of gymnosperms, the structure and evolution of primitive seed plants. Hutchinson University Library, London

    Google Scholar 

  • Stebbins GL (1981) Why are there so many species of flowering plants? Bioscience 31:573–577

    Article  Google Scholar 

  • Stevens PF (2008) Angiosperm Phylogeny Website. Version 9. http://www.mobot.org/MOBOT/research/APweb/

  • Stockey RA, Rothwell GW (2003) Anatomically preserved Williamsonia (Williamsoniaceae): evidence for Bennettitalean reproduction in the Late Cretaceous of western North America. Int J Plant Sci 164:251–262

    Article  Google Scholar 

  • Sun G, Dilcher DL (2002) Early angiosperms from the lower Cretaceous of Jixi, eastern Heilongjiang, China. Rev Palaeobot Palynol 121:91–112

    Article  Google Scholar 

  • Sun G, Dilcher DL, Zheng S, Zhou Z (1998) In search of the first flower: a Jurassic angiosperm, Archaefructus, from Northeast China. Science 282:1692–1695

    Article  Google Scholar 

  • Sun G, Zheng S, Dilcher D, Wang Y, Mei S (2001) Early angiosperms and their associated plants from Western Liaoning, China. Shanghai Technology & Education Press, Shanghai

    Google Scholar 

  • Sun G, Ji Q, Dilcher DL, Zheng S, Nixon KC, Wang X (2002) Archaefructaceae, a new basal angiosperm family. Science 296:899–904

    Article  Google Scholar 

  • Sun C, Dilcher DL, Wang H, Sun G, Ge Y (2009) Czekanowskia from the Jurassic of Inner Mongolia, China. Int J Plant Sci 170:1183–1194

    Article  Google Scholar 

  • Taylor TN (1981) Paleobotany: an introduction to fossil plant biology. McGraw-Hill, New York

    Google Scholar 

  • Taylor TN, Archangelsky S (1985) The Cretaceous pteridosperms of Ruflorinia and Ktalenia and implication on cupule and carpel evolution. Am J Bot 72:1842–1853

    Article  Google Scholar 

  • Taylor DW, Hickey LJ (1990) An Aptian plant with attached leaves and flowers: implications for angiosperm origin. Science 247:702–704

    Article  Google Scholar 

  • Taylor DW, Hickey LJ (1992) Phylogenetic evidence for the herbaceous origin of angiosperms. Plant Syst Evol 180:137–156

    Article  Google Scholar 

  • Taylor DW, Hickey LJ (1996) Flowering plant origin, evolution & phylogeny. Chapman & Hall, New York

    Book  Google Scholar 

  • Taylor EL, Taylor TN (2009) Seed ferns from the late Paleozoic and Mesozoic: any angiosperm ancestors lurking there? Am J Bot 96:237–251

    Article  Google Scholar 

  • Taylor DW, Li H, Dahl J, Fago FJ, Zinniker D, Moldowan JM (2006a) Biogeochemical evidence for the presence of the angiosperm molecular fossil oleanane in Paleozoic and Mesozoic non-angiospermous fossils. Paleobiology 32:179–190

    Article  Google Scholar 

  • Taylor EL, Taylor TN, Kerp H, Hermsen EJ (2006b) Mesozoic seed ferns: old paradigms, new discoveries. J Torrey Bot Soc 133:62–82

    Article  Google Scholar 

  • Taylor TN, Taylor EL, Krings M (2009) Paleobotany: the biology and evolution of fossil plants. Elsevier, Amsterdam

    Google Scholar 

  • Tekleva MV, Krassilov VA (2009) Comparative pollen morphology and ultrastructure of modern and fossil gnetophytes. Rev Palaeobot Palynol 156:130–138

    Article  Google Scholar 

  • Thoday MG, Berridge EM (1912) The anatomy of morphology of the inflorescences and flowers of Ephedra. Ann Bot 26:953–985

    Article  Google Scholar 

  • Thomas HH (1925) The Caytoniales, a new group of angiospermous plants from the Jurassic rocks of Yorkshire. Philos Trans R Soc Lond 213B:299–363. Plates 211–215

    Article  Google Scholar 

  • Thomas HH (1936) Palaeobotany and origin of the angiosperms. Bot Rev 2:397–418

    Article  Google Scholar 

  • Tomlinson PB, Takaso T (2002) Seed cone structure in conifers in relation to development and pollination: a biological approach. Can J Bot 80:1250–1273

    Article  Google Scholar 

  • Upchurch GRJ, Wolfe JA (1987) Mid-Cretaceous to early Tertiary vegetation and climate: evidence from fossil leaves and woods. In: Friis EM, Chaloner WG, Crane PR (eds) The origin of the angiosperms and their biological consequences. Cambridge University Press, Cambridge, pp 75–105

    Google Scholar 

  • Van Konijnenburg-Van Cittert JHA (2010) The early Jurassic male ginkgoalean inflorescence Stachyopitys preslii Schenk and its in situ pollen. Scr Geol 7:141–149

    Google Scholar 

  • Van Konijnenburg-Van Cittert JHA, Schmeissner S (1999) Fossil insect eggs on Lower Jurassic plant remains from Bavaria (Germany). Palaeogeogr Palaeoclimatol Palaeoecol 152:215–223

    Article  Google Scholar 

  • Walker JD, Geissman JW, Bowring SA, Babcock LE (2012) Geologic time scale, v. 4.0. Geological Society of America, Boston

    Book  Google Scholar 

  • Wang X (2009) New fossils and new hope for the origin of angiosperms. In: Pontarotti P (ed) Evolutionary biology: concept, modeling and application. Springer, Berlin, pp 51–70

    Chapter  Google Scholar 

  • Wang X (2010a) Axial nature of cupule-bearing organ in Caytoniales. J Syst Evol 48:207–214

    Article  Google Scholar 

  • Wang X (2010b) Schmeissneria: An angiosperm from the Early Jurassic. J Syst Evol 48:326–335

    Article  Google Scholar 

  • Wang X, Han G (2011) The earliest ascidiate carpel and its implications for angiosperm evolution. Acta Geol Sin 85:998–1002

    Article  Google Scholar 

  • Wang X, Wang S (2010) Xingxueanthus: an enigmatic Jurassic seed plant and its implications for the origin of angiospermy. Acta Geol Sin 84:47–55

    Article  Google Scholar 

  • Wang B, Zhang H (2011) The oldest Tenebrionoidea (Coleoptera) from the Middle Jurassic of China. J Paleontol 85:266–270

    Article  Google Scholar 

  • Wang X, Zheng S (2009) The earliest normal flower from Liaoning Province, China. J Integr Plant Biol 51:800–811

    Article  Google Scholar 

  • Wang X, Zheng S (2010) Whole fossil plants of Ephedra and their implications on the morphology, ecology and evolution of Ephedraceae (Gnetales). Chin Sci Bull 55:1511–1519

    Article  Google Scholar 

  • Wang X, Zheng X-T (2012) Reconsiderations on two characters of early angiosperm Archaefructus. Palaeoworld 21:193–201

    Article  Google Scholar 

  • Wang X, Duan S, Cui J (1997) Several species of Schizolepis and their significance on the evolution of conifers. Taiwania 42:73–85

    Google Scholar 

  • Wang X, Duan S, Geng B, Cui J, Yang Y (2007a) Schmeissneria: a missing link to angiosperms? BMC Evol Biol 7:14

    Article  Google Scholar 

  • Wang X, Duan S, Geng B, Cui J, Yang Y (2007b) Is Jurassic Schmeissneria an angiosperm? Acta Palaeontol Sin 46:486–490

    Google Scholar 

  • Wang X, Krings M, Taylor TN (2010) A thalloid organism with possible lichen affinity from the Jurassic of northeastern China. Rev Palaeobot Palynol 162:567–574

    Article  Google Scholar 

  • Wang X, Liu ZJ, Liu WZ, Zhang X, Guo XM, Hu GW, Zhang SZ, Wang YL, Liao WB (2015) Breaking the stasis of current plant systematics. Sci Tech Rev 33:97–105

    Google Scholar 

  • Watson J, Sincock CA (1992) Bennettitales of the English Wealden. Monogr Palaeontographical Soc 145:1–228

    Google Scholar 

  • Wcislo-Luraniec E (1992) A fructification of Stachyopitys preslii Schenk from the lower Jurassic of Poland. Courier Forsch-Institut Senckenberg 147:247–253

    Google Scholar 

  • Wilf P, Carvalho MR, Gandolfo MA, Cúneo NR (2017) Eocene lantern fruits from Gondwanan Patagonia and the early origins of Solanaceae. Science 355:71–75

    Article  Google Scholar 

  • Wing SL, Tiffney BH (1987) Interactions of angiosperms and herbivorous tetrapods through time. In: Friis EM, Chaloner WG, Crane PR (eds) The origin of the angiosperms and their biological consequences. Cambridge University Press, Cambridge, pp 203–224

    Google Scholar 

  • Wu Z-Y, Lu A-M, Tang Y-C, Chen Z-D, Li D-Z (2003) The families and genera of angiosperms in China, a comprehensive analysis. Science Press, Beijing

    Google Scholar 

  • Xu R (1987) Do fossil angiosperms really occur in Jurassic beds of the Yanshan-Liaoning area, north China. Kexue Tongbao 32:1712–1714

    Google Scholar 

  • Xu K, Yang J, Tao M, Liang H, Zhao C, Li R, Kong H, Li Y, Wan C, Peng W (2003) The stratigraphic region of northeast China. Petroleum Industry Press, Beijing

    Google Scholar 

  • Yang Y (2001) Ontogenetic and metamorphic patterns of female reproductive organs of Ephedra sinica Stapf (Ephedraceae). Acta Bot Sin 43:1011–1017

    Google Scholar 

  • Yang Y (2004) Ontogeny of triovulate cones of Ephedra intermedia and origin of the outer envelope of ovules of Ephedraceae. Am J Bot 91:361–368

    Article  Google Scholar 

  • Yang Y, Geng B-Y, Dilcher DL, Chen Z-D, Lott TA (2005) Morphology and affinities of an early Cretaceous Ephedra (Ephedraceae) from China. Am J Bot 92:231–241

    Article  Google Scholar 

  • Zavialova N, Van Konijnenburg-Van Cittert J, Zavada M (2009) The pollen ultrastructure of Williamsoniella coronata Thomas (Bennettitales) from the Bajocian of Yorkshire. Int J Plant Sci 170:1195–1200

    Article  Google Scholar 

  • Zhang W, Zheng S (1987) Early Mesozoic fossil plants in western Liaoning, Northeast China. In: Yu X, Wang W, Liu X, Zhang W, Zheng S, Zhang Z, Yu Q, Ma F, Dong GY, Yao P (eds) Mesozoic stratigraphy and palaeontology of western Liaoning. Geological Publishing House, Beijing, pp 239–368

    Google Scholar 

  • Zheng S, Wang X (2010) An undercover angiosperm from the Jurassic of China. Acta Geol Sin 84:895–902

    Article  Google Scholar 

  • Zheng S-L, Zhang L-J, Gong E-P (2003) A discovery of Anomozamites with reproductive organs. Acta Bot Sin 45:667–672

    Google Scholar 

  • Zhou Z-Y (2003) Mesozoic ginkgoaleans: phylogeny, classification and evolutionary trends. Acta Bot Yunnanica 25:377–396

    Google Scholar 

  • Zhou Z, Zhang B (1998) Tianshania patens gen. et sp. nov., a new type of leafy shoots associated with Phoenicopsis from the middle Jurassic Yima Formation, Henan, China. Rev Palaeobot Palynol 102:165–178

    Article  Google Scholar 

  • Zhou Z, Zheng S (2003) The missing link in Ginkgo evolution. Nature 423:821–822

    Article  Google Scholar 

  • Zhu W (1983) The use of the peeling method in palaeobotanical studies. Chin Bull Bot 1:51–53

    Google Scholar 

  • Zürlick VF (1958) Neue Pflanzen aus dem Rhätolias. Aufschluß 9:58–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Wang, X. (2018). Flower-Related Fossils from the Jurassic. In: The Dawn Angiosperms. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-58325-9_6

Download citation

Publish with us

Policies and ethics