Skip to main content

Flowers from the Early Cretaceous

  • Chapter
  • First Online:
The Dawn Angiosperms

Part of the book series: Springer Geology ((SPRINGERGEOL))

  • 789 Accesses

Abstract

Fossil angiosperms from the Early Cretaceous are of special interest because currently the earliest widely-accepted angiosperms are of this age. Chaoyangia, Archaefructus, Sinocarpus, Callianthus, Liaoningfructus, Baicarpus, and Nothodichocarpum are representative angiosperms from the Yixian Formation (125 Ma, Early Cretaceous). Their early age, distinct morphology, and reproductive features not only display an aspect of early angiosperms, but also, if monophyly of angiosperms is assumed, strongly suggest that the origin of angiosperms must have occurred even earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • APG (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436

    Article  Google Scholar 

  • APG (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Arber EAN, Parkin J (1907) On the origin of angiosperms. J Linn Soc Lond Bot 38:29–80

    Article  Google Scholar 

  • Axsmith BJ, Taylor EL, Taylor TN, Cuneo NR (2000) New perspectives on the Mesozoic seed fern order Corystospermales based on attached organs from the Triassic of Antarctica. Am J Bot 87:757–768

    Article  Google Scholar 

  • Bierhorst DW (1971) Morphology of vascular plants. Macmillan, New York

    Google Scholar 

  • Biswas C, Johri BM (1997) The gymnosperms. Springer, Berlin

    Book  Google Scholar 

  • Bowe LM, Coat G, dePamphilis CW (2000) Phylogeny of seed plants based on all three genomic compartments: extant Gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA 97:4092–4097

    Article  Google Scholar 

  • Brenner GJ (1976) Middle Cretaceous floral province and early migrations of angiosperms. In: Beck CB (ed) Origin and early evolution of angiosperms. Columbia University Press, New York, pp 23–47

    Google Scholar 

  • Burleigh JG, Mathews S (2004) Phylogenetic signal in nucleotide data from seed plants: implications from resolving the seed plant tree of life. Am J Bot 91:1599–1613

    Article  Google Scholar 

  • Buzgo M, Soltis Pamela S, Soltis Douglas E (2004) Floral developmental morphology of Amborella trichopoda (Amborellaceae). Int J Plant Sci 165:925–947

    Article  Google Scholar 

  • Chamberlain CJ (1957) Gymnosperms, structure and evolution. Johnson Reprint, New York

    Google Scholar 

  • Chang S-C, Zhang H, Renne PR, Fang Y (2009) High-precision 40Ar/39Ar age for the Jehol Biota. Palaeogeogr Palaeoclimatol Palaeoecol 280:94–104

    Google Scholar 

  • Chaw SM, Parkinson CL, Cheng Y, Vincent TM, Palmer JD (2000) Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci USA 97:4086–4091

    Article  Google Scholar 

  • Chu GL, Stutz HC, Sanderson SC (1991) Morphology and taxonomic position of Suckleya suckleyana (Chenopodiaceae). Am J Bot 78:63–68

    Article  Google Scholar 

  • Cope EA (1998) Taxaceae: the genera and cultivated species. Bot Rev 64:291–322

    Article  Google Scholar 

  • Crane PR (1996) The fossil history of Gnetales. Int J Plant Sci 157:S50–S57

    Article  Google Scholar 

  • Crane PR, Herendeen PS (2009) Bennettitales from the Grisethrope Bed (Middle Jurassic) at Cayton Bay, Yorkshire, UK. Am J Bot 96:284–295

    Article  Google Scholar 

  • Crepet WL, Nixon KC, Gandolfo MA (2004) Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. Am J Bot 91:1666–1682

    Article  Google Scholar 

  • Cronquist A (1988) The evolution and classification of flowering plants. New York Botanical Garden, Bronx

    Google Scholar 

  • Dilcher DL (1979) Early angiosperm reproduction: an introductory report. Rev Palaeobot Palynol 27:291–328

    Article  Google Scholar 

  • Dilcher DL (2010) Major innovations in angiosperm evolution. In: Gee CT (ed) Plants in the Mesozoic time: innovations, phylogeny, ecosystems. Indiana University Press, Bloomington, IN, pp 97–116

    Google Scholar 

  • Dilcher DL, Bernardes-De-Oliveira ME, Pons D, Lott TA (2005) Welwitschiaceae from the Lower Cretaceous of northeastern Brazil. Am J Bot 92:1294–1310

    Article  Google Scholar 

  • Dilcher DL, Sun G, Ji Q, Li H (2007) An early infructescence Hyrcantha decussata (comb. nov.) from the Yixian Formation in northeastern China. Proc Natl Acad Sci USA 104:9370–9374

    Article  Google Scholar 

  • Dorit RL (2009) Keyboards, codes and the search for optimality. Am Sci 97:376–379

    Article  Google Scholar 

  • Doyle JA (1998) Molecules, morphology, fossils, and the relationship of angiosperms and Gnetales. Mol Phylogenet Evol 9:448–462

    Article  Google Scholar 

  • Doyle JA (2008) Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower. Int J Plant Sci 169:816–843

    Article  Google Scholar 

  • Doyle JA, Endress PK (2000) Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. Int J Plant Sci 161:S121–S153

    Article  Google Scholar 

  • Doyle JA, Endress PK, Upchurch GR (2008) Early Cretaceous monocots: a phylogenetic evaluation. Acta Musei Nationalis Pragae 64:59–87

    Google Scholar 

  • Drinnan AN, Crane PR, Friis EM, Pedersen KR (1991) Angiosperm flowers and tricolpate pollen of buxaceous affinity from the Potomac Group (mid-Cretaceous) of eastern North America. Am J Bot 78:153–176

    Article  Google Scholar 

  • Drinnan AN, Crane PR, Hoot SB (1994) Patterns of floral evolution in the early diversification on non-magnoliid dicotyledons (eudicots). Plant Syst Evol 8:93–122

    Google Scholar 

  • Duan S (1997) The oldest angiosperm—a tricarpous female reproductive fossil from western Liaoning Province, NE China. Sci Chin Ser D Earth Sci 27:519–524

    Google Scholar 

  • Duan S (1998) The oldest angiosperm—a tricarpous female reproductive fossil from western Liaoning Province, NE China. Sci China Ser D Earth Sci 41:14–20

    Article  Google Scholar 

  • Eames AJ (1961) Morphology of the angiosperms. McGraw-Hill, New York

    Book  Google Scholar 

  • Endress PK (1980a) Floral structure and relationship of Hortonia (The Monimiaceae). Plant Syst Evol 133:199–221

    Article  Google Scholar 

  • Endress PK (1980b) Ontogeny, function and evolution of extreme floral construction in the Monimiaceae. Plant Syst Evol 134:79–120

    Article  Google Scholar 

  • Endress PK (2001) The flowers in extant basal angiosperms and inferences on ancestral flowers. Int J Plant Sci 162:1111–1140

    Article  Google Scholar 

  • Endress PK (2005) Carpels of Brasenia (Cabombaceae) are completely ascidiate despite a long stigmatic crest. Ann Bot 96:209–215

    Article  Google Scholar 

  • Endress PK, Doyle JA (2009) Reconstructing the ancestral angiosperm flower and its initial specializations. Am J Bot 96:22–66

    Article  Google Scholar 

  • Endress PK, Doyle JA (2015) Ancestral traits and specializations in the flowers of the basal grade of living angiosperms. Taxon 64:1093–1116

    Article  Google Scholar 

  • Eriksson O, Friis EM, Pedersen KR, Crane PR (2000) Seed size and dispersal systems of early Cretaceous angiosperms from Famalicao, Portugal. Int J Plant Sci 161:319–329

    Article  Google Scholar 

  • Fagerlind F (1944) Die Samenbildung und die Zytologie bei agamospermischen und sexuelle Arten von Elatostema und einigen nahestehenden Gattungen nebst Beleuchtung einiger damit zusammenhaengender Probleme. Kongelige Svenska Vetensk Akad Handl Ser 3(21):1–130

    Google Scholar 

  • Friis EM, Doyle JA, Endress PK, Leng Q (2003) Archaefructus—angiosperm precursor or specialized early angiosperm? Trends Plant Sci 8:S369–S373

    Article  Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2005) When earth started blooming: insights from the fossil record. Curr Opin Plant Biol 8:5–12

    Article  Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2006) Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeogr Palaeoclimatol Palaeoecol 232:251–293

    Article  Google Scholar 

  • Friis EM, Crane PR, Pedersen KR, Bengtson S, Donoghue PCJ, Grimm GW, Stampanoni M (2007) Phase-contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales. Nature 450:549–552

    Article  Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2009) Early Cretaceous mesofossils from Portugal and eastern North America related to the Bennettitales-Erdtmanithecales-Gnetales group. Am J Bot 96:252–283

    Article  Google Scholar 

  • Furness CA, Rudall PJ, Sampson FB (2002) Evolution of microsporogenesis in angiosperms. Int J Plant Sci 163:235–260

    Article  Google Scholar 

  • Guo SX, Wu XW (2000) Ephedrites from latest Jurassic Yixian formation in western Liaoning, northeast China. Acta Palaeontol Sin 39:81–91

    Google Scholar 

  • Hamilton D (2007) First flower. PBS, USA

    Google Scholar 

  • Han G, Fu X, Liu Z-J, Wang X (2013) A new angiosperm genus from the lower Cretaceous Yixian Formation, Western Liaoning, China. Acta Geol Sin 87:916–925

    Article  Google Scholar 

  • Han G, Liu Z-J, Liu X, Mao L, Jacques FMB, Wang X (2016) A whole plant herbaceous angiosperm from the Middle Jurassic of China. Acta Geol Sin 90:19–29

    Article  Google Scholar 

  • Han G, Liu Z, Wang X (2017) A Dichocarpum-like angiosperm from the early Cretaceous of China. Acta Geol Sin 90:1–8

    Article  Google Scholar 

  • Harley MM (1990) Occurrence of simple, tectate, monosulcate or trichotomosulcate pollen grains within the Palmae. Rev Palaeobot Palynol 64:137–147

    Article  Google Scholar 

  • Harley MM (2004) Triaperturate pollen in the monocotyledons: configurations and conjectures. Plant Syst Evol 247:75–122

    Article  Google Scholar 

  • Harris TM (1933) A new member of the Caytoniales. New Phytol 32:97–114

    Article  Google Scholar 

  • Harris TM (1935) The fossil flora of Scoresby sound east Greenland. Part 4: Ginkgoales, Coniferales, Lycopodiales and isolated fructifications. Medd Grønland 112:1–176

    Google Scholar 

  • Harris TM (1940) Caytonia. Ann Bot Lond 4:713–734

    Article  Google Scholar 

  • Harris TM (1964) Caytoniales, Cycadales & Pteridosperms. Trustees of the British Museum (Natural History), London

    Google Scholar 

  • Harris TM (1969) Bennettitales. Trustees of the British Museum (Natural History), London

    Google Scholar 

  • Hayes V, Schneider EL, Carlquist S (2000) Floral development of Nelumbo nucifera (Nelumbonaceae). Int J Plant Sci 161:S183–S191

    Article  Google Scholar 

  • He CY, Münster T, Saedler H (2004a) On the origin of morphological floral novelties. FEBS Lett 567:147–151

    Article  Google Scholar 

  • He HY, Wang XL, Zhou ZH, Wang F, Boven A, Shi GH, Zhu RX (2004b) Timing of the Jiufotang Formation (Jehol Group) in Liaoning, northeastern China, and its implications. Geophys Res Lett 31:L12605

    Google Scholar 

  • Heywood VH (ed) (1979) Flowering plants of the world. Oxford University Press, Oxford

    Google Scholar 

  • Hill CR, Crane PR (1982) Evolutionary cladistics and the origin of angiosperms. In: Joysey KA, Friday AE (eds) Problems of phylogenetic reconstruction, Proceedings of the systematics association symposium, Cambridge, 1980. Academic Press, New York, pp 269–361

    Google Scholar 

  • Hochuli PA, Feist-Burkhardt S (2004) A boreal early cradle of angiosperms? angiosperm-like pollen from the Middle Triassic of the Barents Sea (Norway). J Micropalaeontol 23:97–104

    Article  Google Scholar 

  • Hochuli PA, Feist-Burkhardt S (2013) Angiosperm-like pollen and Afropollis from the Middle Triassic (Anisian) of the Germanic Basin (Northern Switzerland). Front Plant Sci 4:344

    Article  Google Scholar 

  • Hu S, Dilcher DL, Jarzen DM, Taylor DW (2008) Early steps of angiosperm-pollinator coevolution. Proc Natl Acad Sci USA 105:240–245

    Article  Google Scholar 

  • Hughes NF (1994) The enigma of angiosperm origins. Cambridge University Press, Cambridge

    Google Scholar 

  • Ji Q, Li H, Bowe M, Liu Y, Taylor DW (2004) Early Cretaceous Archaefructus eoflora sp. nov. with bisexual flowers from Beipiao, Western Liaoning, China. Acta Geol Sin 78:883–896

    Google Scholar 

  • Judd WS, Campbell SC, Kellogg EA, Stevens PF (1999) Plant systematics: a phylogenetic approach. Sinauer, Sunderland, MA

    Google Scholar 

  • Krassilov VA (1982) Early Cretaceous flora of Mongolia. Paläontographica Abt B 181:1–43

    Google Scholar 

  • Krassilov VA (2009) Diversity of Mesozoic gnetophytes and the first angiosperms. Paleontol J 43:1272–1280

    Article  Google Scholar 

  • Krassilov VA, Shilin PV, Vachrameev VA (1983) Cretaceous flowers from Kazakhstan. Rev Palaeobot Palynol 40:91–113

    Article  Google Scholar 

  • Krassilov VA, Lewy Z, Nevo E (2004) Controversial fruit-like remains from the Lower Cretaceous of the Middle East. Cretac Res 25:697–707

    Article  Google Scholar 

  • LeBlanc DA, Lacroix CR (2001) Developmental potential of galls induced by Diplolepis rosaefolii (Hymenoptera: Cynipidae) on the leaves of Rosa virginiana and the influence of Periclistus species on the Diplolepis rosaefolii galls. Int J Plant Sci 162:29–46

    Article  Google Scholar 

  • Leng Q, Friis EM (2003) Sinocarpus decussatus gen. et sp. nov., a new angiosperm with basally syncarpous fruits from the Yixian Formation of Northeast China. Plant Syst Evol 241:77–88

    Article  Google Scholar 

  • Leng Q, Friis EM (2006) Angiosperm leaves associated with Sinocarpus infructescences from the Yixian formation (Mid-Early Cretaceous) of NE China. Plant Syst Evol 262:173–187

    Article  Google Scholar 

  • Leslie AB, Boyce CK (2012) Ovule function and the evolution of angiosperm reproductive innovations. Int J Plant Sci 173:640–648

    Article  Google Scholar 

  • Li H, Tian B, Taylor EL, Taylor TN (1994) Foliar anatomy of Gigantonoclea guizhouensis (Gigantopteridales) from the upper Permian of Guizhou province, China. Am J Bot 81:678–689

    Article  Google Scholar 

  • Liu W-Z, Hilu K, Wang Y-L (2014) From leaf and branch into a flower: Magnolia tells the story. Bot Stud 55:28

    Article  Google Scholar 

  • Lorence DH (1985) A monograph of the Monimiaceae (Laurales) in the Malagasy region (Southwest Indian Ocean). Ann Mo Bot Gard 72:1–165

    Article  Google Scholar 

  • Magallόn S, Sanderson MJ (2002) Relationships among seed plants inferred from highly conserved genes: sorting conflicting phylogenetic signals among ancient lineages. Am J Bot 89:1991–2006

    Article  Google Scholar 

  • Meeuse ADJ (1963) From ovule to ovary: a contribution to the phylogeny of the megasporangium. Acta Biotheor XVI:127–182

    Article  Google Scholar 

  • Melchior H (ed) (1964) A. Engler’s Syllabus der Pflanzenfamilien. Gebrueder Borntraeger, Berlin

    Google Scholar 

  • Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve en-igmatic relationships among basal angiosperms. Proc Natl Acad Sci USA 104:19363–19368

    Article  Google Scholar 

  • Pedersen KR, Von Balthazar M, Crane PR, Friis EM (2007) Early Cretaceous floral structures and in situ tricolpate-striate pollen: new early eudicots from Portugal. Grana 46:176–196

    Article  Google Scholar 

  • Penaflor C, Hansen DR, Dastidar SG, Cai Z, Kuehl JV, Boore JL, Jansen RK (2007) Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). Mol Phylogenet Evol 45:547–563

    Article  Google Scholar 

  • Peng Y-D, Zhang L-D, Chen W, Zhang C-J, Guo S-Z, Xing D-H, Jia B, Chen S-W, Ding Q-H (2003) 40Ar/39Ar and K-Ar dating of the Yixian Formation volcanic rocks, western Liaoning province, China. Geochimca 32:427–435

    Google Scholar 

  • Qiu Y-L, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404–407

    Article  Google Scholar 

  • Ren D (1998) Flower-associated Brachycera flies as fossil evidences for Jurassic angiosperm origins. Science 280:85–88

    Article  Google Scholar 

  • Rothwell GW, Stockey RA (2002) Anatomically preserved Cycadeoidea (Cycadeoidaceae), with a reevaluation of systematic characters for the seed cones of Bennettitales. Am J Bot 89:1447–1458

    Article  Google Scholar 

  • Rothwell GW, Crepet WL, Stockey RA (2009) Is the anthophyte hypothesis alive and well? New evidence from the reproductive structures of Bennettitales. Am J Bot 96:296–322

    Article  Google Scholar 

  • Rudall PJ, Furness CA, Chase MW, Fay MF (1997) Microsporogenesis and pollen sulcus type in Asparagales (Lilianae). Can J Bot 75:408–430

    Article  Google Scholar 

  • Rudall PJ, Remizowa MV, Prenner G, Prychid CJ, Tuckett RE, Sokoloff DD (2009) Nonflowers near the base of extant angiosperms? Spatiotemporal arrangement of organs in reproductive units of Hydatellaceae and its bearing on the origin of the flower. Am J Bot 96:67–82

    Article  Google Scholar 

  • Ryberg PE, Taylor EL, Taylor TN (2012) The first permineralized microsporophyll of the Glossopteridales: Eretmonia macloughlinii sp. nov. Int J Plant Sci 173:812–822

    Article  Google Scholar 

  • Rydin C, Friis EM (2010) A new Early Cretaceous relative of Gnetales: Siphonospermum simplex gen. et sp. nov. from the Yixian Formation of Northeast China. BMC Evol Biol 10:183

    Article  Google Scholar 

  • Rydin C, Pedersen KR, Crane PR, Friis E (2006a) Former diversity of Ephedra (Gnetales): evidence from early Cretaceous seeds from Portugal and North America. Ann Bot 98:123–140

    Article  Google Scholar 

  • Rydin C, Wu S, Friis E (2006b) Liaoxia Cao et S.Q. Wu (Gnetales): ephedroids from the early Cretaceous Yixian Formation in Liaoning, northeastern China. Plant Syst Evol 262:239–265

    Article  Google Scholar 

  • Saarela JM, Rai HS, Doyle JA, Endress PK, Mathews S, Marchant AD, Briggs BG, Graham SW (2007) Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature 446:312–315

    Article  Google Scholar 

  • Sampson FB (2000) Pollen diversity in some modern Magnoliids. Int J Plant Sci 161:S193–S210

    Article  Google Scholar 

  • Skinner DJ, Hill TA, Gasser CS (2004) Regulation of ovule development. Plant Cell 16:S32–S45

    Article  Google Scholar 

  • Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis MJ, Savolainen V, Hahn WH, Hoot SB, Fay MF et al (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461

    Article  Google Scholar 

  • Soltis DE, Soltis PS, Zanis M (2002) Phylogeny of seed plants based on eight genes. Am J Bot 89:1670–1681

    Article  Google Scholar 

  • Soltis DE, Bell CD, Kim S, Soltis PS (2004) The origin and early evolution of angiosperms. Ann N Y Acad Sci 1133:3–25

    Article  Google Scholar 

  • Soltis DE, Bell CD, Kim S, Soltis PS (2008) Origin and early evolution of angiosperms. Ann N Y Acad Sci 1133:3–25

    Article  Google Scholar 

  • Stevens PF (2008) Angiosperm Phylogeny Website. Version 9. http://www.mobot.org/MOBOT/research/APweb/

  • Stockey RA, Rothwell GW (2003) Anatomically preserved Williamsonia (Williamsoniaceae): evidence for Bennettitalean reproduction in the Late Cretaceous of western North America. Int J Plant Sci 164:251–262

    Article  Google Scholar 

  • Sun G (1981) Discovery of Dipteridaceae from the upper Triassic of eastern Jilin. Acta Palaeontol Sin 20:459–467

    Google Scholar 

  • Sun G, Dilcher DL, Zheng S, Zhou Z (1998) In search of the first flower: a Jurassic angiosperm, Archaefructus, from Northeast China. Science 282:1692–1695

    Article  Google Scholar 

  • Sun G, Zheng S, Dilcher D, Wang Y, Mei S (2001) Early angiosperms and their associated plants from Western Liaoning, China. Shanghai Technology & Education Press, Shanghai

    Google Scholar 

  • Sun G, Ji Q, Dilcher DL, Zheng S, Nixon KC, Wang X (2002) Archaefructaceae, a new basal angiosperm family. Science 296:899–904

    Article  Google Scholar 

  • Swisher CC, Wang Y, Wang X, Xu X, Wang Y (1998) 40Ar/39Ar dating of the lower Yixian Fm, Liaoning Province, northeastern China. Chin Sci Bull 43:125

    Article  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (and other methods). Sinauer Associate, Sunderland, MA

    Google Scholar 

  • Takhtajan A (1969) Flowering plants, origin and dispersal. Oliver & Boyd Ltd., Edinburgh

    Google Scholar 

  • Takhtajan A (1997) Diversity and classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Taylor DW (1991) Angiosperm ovule and carpels: their characters and polarities, distribution in basal clades, and structural evolution. Postilla 208:1–40

    Google Scholar 

  • Taylor DW, Hickey LJ (1990) An Aptian plant with attached leaves and flowers: implications for angiosperm origin. Science 247:702–704

    Article  Google Scholar 

  • Taylor DW, Hickey LJ (1992) Phylogenetic evidence for the herbaceous origin of angiosperms. Plant Syst Evol 180:137–156

    Article  Google Scholar 

  • Taylor DW, Hickey LJ (1996) Flowering plant origin, evolution & phylogeny. Chapman & Hall, New York

    Book  Google Scholar 

  • Taylor TN, Taylor EL, Krings M (2009) Paleobotany: the biology and evolution of fossil plants. Elsevier, Amsterdam

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) CLUSTAL-X windows interface: flexible strategies for multiple sequences alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  Google Scholar 

  • Tomlinson PB (1992) Aspects of cone morphology and development in Podocarpaceae (Coniferales). Int J Plant Sci 153:572–588

    Article  Google Scholar 

  • Tomlinson PB, Takaso T (2002) Seed cone structure in conifers in relation to development and pollination: a biological approach. Can J Bot 80:1250–1273

    Article  Google Scholar 

  • Tomlinson PB, Braggins JE, Rattenbury JA (1991) Pollination drop in relation to cone morphology in Podocarpaceae: a novel reproductive mechanism. Am J Bot 78:1289–1303

    Article  Google Scholar 

  • Van Heel WA (1981) A SEM-investigation on the development of free carpels. Blumea 27:499–522

    Google Scholar 

  • Walker JW (1976) Comparative pollen morphology and phylogeny of the Ranalean complex. In: Beck CB (ed) Origin and early evolution of angiosperms. Columbia University Press, New York, pp 241–299

    Google Scholar 

  • Walker JW, Skvarla JJ (1975) Primitively columellaless pollen: a new concept in the evolutionary morphology of angiosperms. Science 187:445–447

    Article  Google Scholar 

  • Walker JW, Walker AG (1984) Ultrastructure of lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. Ann Mo Bot Gard 71:464–521

    Article  Google Scholar 

  • Wang X (2009) New fossils and new hope for the origin of angiosperms. In: Pontarotti P (ed) Evolutionary biology: concept, modeling and application. Springer, Berlin, pp 51–70

    Chapter  Google Scholar 

  • Wang X (2010a) Axial nature of cupule-bearing organ in Caytoniales. J Syst Evol 48:207–214

    Article  Google Scholar 

  • Wang X (2010b) Schmeissneria: An angiosperm from the Early Jurassic. J Syst Evol 48:326–335

    Article  Google Scholar 

  • Wang X, Han G (2011) The earliest ascidiate carpel and its implications for angiosperm evolution. Acta Geol Sin 85:998–1002

    Article  Google Scholar 

  • Wang X, Wang S (2010) Xingxueanthus: an enigmatic Jurassic seed plant and its implications for the origin of angiospermy. Acta Geol Sin 84:47–55

    Article  Google Scholar 

  • Wang X, Zheng S (2009) The earliest normal flower from Liaoning Province, China. J Integr Plant Biol 51:800–811

    Article  Google Scholar 

  • Wang X, Zheng S (2010) Whole fossil plants of Ephedra and their implications on the morphology, ecology and evolution of Ephedraceae (Gnetales). Chin Sci Bull 55:1511–1519

    Article  Google Scholar 

  • Wang X, Zheng X-T (2012) Reconsiderations on two characters of early angiosperm Archaefructus. Palaeoworld 21:193–201

    Article  Google Scholar 

  • Wang X, Ren D, Wang Y (2000) First discovery of angiospermous pollen from Yixian Formation. Acta Geol Sin 74:265–272

    Google Scholar 

  • Wang W, Zhang H, Zhang L, Zheng S, Yang F, Li Z, Zheng Y, Ding Q (2004) Standard sections of Tuchengzi stage and Yixian stage and their stratigraphy, palaeontology and tectonic-volcanic actions. Geological Publishing House, Beijing

    Google Scholar 

  • Wang X, Duan S, Geng B, Cui J, Yang Y (2007a) Schmeissneria: a missing link to angiosperms? BMC Evol Biol 7:14

    Article  Google Scholar 

  • Wang X, Duan S, Geng B, Cui J, Yang Y (2007b) Is Jurassic Schmeissneria an angiosperm? Acta Palaeontol Sin 46:486–490

    Google Scholar 

  • Wang X, Krings M, Taylor TN (2010a) A thalloid organism with possible lichen affinity from the Jurassic of northeastern China. Rev Palaeobot Palynol 162:567–574

    Article  Google Scholar 

  • Wang X, Zheng S, Jin J (2010b) Structure and relationships of Problematospermum, an enigmatic seed from the Jurassic of China. Int J Plant Sci 171:447–456

    Article  Google Scholar 

  • Wheeler Q, Pennak S (2013) What on earth, 100 of our planet’s most amazing new species. Penguin Group, New York

    Google Scholar 

  • Wilf P, Carvalho MR, Gandolfo MA, Cúneo NR (2017) Eocene lantern fruits from Gondwanan Patagonia and the early origins of Solanaceae. Science 355:71–75

    Article  Google Scholar 

  • Williams JH (2009) Amborella trichopoda (Amborellaceae) and the evolutionary developmental origins of the angiosperm progamic phase. Am J Bot 96:144–165

    Article  Google Scholar 

  • Wilson TK (1964) Comparative morphology of the Canellaceae. III. Pollen. Bot Gaz 125:192–197

    Article  Google Scholar 

  • Wu S-Q (1999) A preliminary study of the Jehol flora from the western Liaoning. Palaeoworld 11:7–57

    Google Scholar 

  • Wu S-Q (2003) Land plants. In: Chang M-M, Chen P-J, Wang Y-Q, Wang Y, Miao D-S (eds) The Jehol biota. Shanghai Scientific & Technical Publishers, Shanghai, pp 165–177

    Google Scholar 

  • Wu Z, Raven PH, Hong D (2001) Ranunculaceae. Science Press, Beijing

    Google Scholar 

  • Wu Z-Y, Lu A-M, Tang Y-C, Chen Z-D, Li D-Z (2003) The families and genera of angiosperms in China, a comprehensive analysis. Science Press, Beijing

    Google Scholar 

  • Yang Y (2007) Asymmetrical development of biovulate cones resulting in uniovulate cones in Ephedra rhytiodosperma (Ephedraceae). Plant Syst Evol 264:175–182

    Article  Google Scholar 

  • Yang Y, Wang Q (2013) The earliest fleshy cone of Ephedra from the early Cretaceous Yixian Formation of Northeast China. PLoS ONE 8:e53652

    Article  Google Scholar 

  • Yang Y, Fu DZ, Zhu G (2003) A new species of Ephedra (Ephedraceae) from China. Novon 13:153–155

    Article  Google Scholar 

  • Yang Y, Geng B-Y, Dilcher DL, Chen Z-D, Lott TA (2005) Morphology and affinities of an early Cretaceous Ephedra (Ephedraceae) from China. Am J Bot 92:231–241

    Article  Google Scholar 

  • Zan S, Axsmith BJ, Fraser NC, Liu F, Xing D (2008) New evidence for laurasian corystosperms: Umkomasia from the Upper Triassic of Northern China. Rev Palaeobot Palynol 149:202–207

    Article  Google Scholar 

  • Zavada MS (1984) Angiosperm origins and evolution based on dispersed fossil pollen ultrastructure. Ann Mo Bot Gard 71:444–463

    Article  Google Scholar 

  • Zavada MS (2007) The identification of fossil angiosperm pollen and its bearing on the time and place of the origin of angiosperms. Plant Syst Evol 263:117–134

    Article  Google Scholar 

  • Zhang H, Huang Y, Miao R, Ye C, Liao W, Jin J (2004) Systematics of spermatophyta. Science Press, Beijing

    Google Scholar 

  • Zhang X, Liu W, Wang X (2017) How the ovules get enclosed in magnoliaceous carpels. PLoS One 12:e0174955

    Article  Google Scholar 

  • Zheng S, Wang X (2010) An undercover angiosperm from the Jurassic of China. Acta Geol Sin 84:895–902

    Article  Google Scholar 

  • Zhou Z-Y (2003) Mesozoic ginkgoaleans: phylogeny, classification and evolutionary trends. Acta Bot Yunnanica 25:377–396

    Google Scholar 

  • Zhou Z-Y (2009) An overview of fossil Ginkgoales. Palaeoworld 18:1–22

    Article  Google Scholar 

  • Zhou Z, Barrett PM, Hilton J (2003) An exceptionally preserved lower Cretaceous ecosystem. Nature 421:807–814

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Wang, X. (2018). Flowers from the Early Cretaceous. In: The Dawn Angiosperms. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-58325-9_5

Download citation

Publish with us

Policies and ethics