Skip to main content

Post-Galilean Epistemology. Experimental Physico-Mathematica

  • Chapter
  • First Online:
Book cover The Path to Post-Galilean Epistemology

Part of the book series: History of Mechanism and Machine Science ((HMMS,volume 34))

  • 788 Accesses

Abstract

After Galileo’s death in the mid-sevententh century, mixed mathematics accelerated its race to conquer all the areas of natural philosophy, with the emergence of what was called physico-mathematica. The process did not depend only on Galileo, but it was part of a long wave that started in the Renaissance with the revitalization of mathematics consequences and causes of European technological development. Of this long wave Galileo was among those who rode the highest billows. One component of this process was the establishment of a strong empiricist component among mathematicians and philosophers of nature, with a relevant space attributed to experimental laboratory practice. This empiricist component is effectively exemplified by the birth of the Academia del cimento and the Royal society. There were, however, characters who went beyond experimental practice. They were the like of Borelli, Baliani, Mersenne, Hooke, and Boyle. They used the results of contrived experiments to develop new branches of physico-mathematica and were crucial for the mathematicians would become the new natural philosophers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    p. 101.

  2. 2.

    The most extensive treatment of Borelli’s life is in Angelo Fabroni, Vitae italorum doctrina excellentium, II (Pisa, 1778), 222–324.

  3. 3.

    pp. 74–75.

  4. 4.

    pp. 437–438.

  5. 5.

    p. 3.

  6. 6.

    In the following I translate always with “force” the Latin terms vis, virtus, facultas, used by Borelli.

  7. 7.

    p. 272.

  8. 8.

    p. 4.

  9. 9.

    pp. 45–46.

  10. 10.

    p. 77.

  11. 11.

    p. 47.

  12. 12.

    pp. 48–49. Translation in [110].

  13. 13.

    p. 49.

  14. 14.

    pp. 60–61.

  15. 15.

    p. 30.

  16. 16.

    pp. 59–62.

  17. 17.

    p. 56.

  18. 18.

    p. 3.

  19. 19.

    pp. 61–62. Translation in [110].

  20. 20.

    pp. 663-64.

  21. 21.

    p. 63.

  22. 22.

    p. 65.

  23. 23.

    p. 67.

  24. 24.

    pp. 274–275.

  25. 25.

    pp. 75–76.

  26. 26.

    pp. 78. Translation in [110].

  27. 27.

    Letter to the Queen Christina.

  28. 28.

    Proemium. Translation in [32].

  29. 29.

    Pars I, p. 30.

  30. 30.

    p. 1.

  31. 31.

    Pars II, p. 96.

  32. 32.

    Pars I, p. 13. Translation in [32].

  33. 33.

    Part I, Proposition 9, p. 11.

  34. 34.

    Part I, p.31.

  35. 35.

    Part I, Proposition 12 pp. 13–14.

  36. 36.

    p. 162.

  37. 37.

    pp. 170–171.

  38. 38.

    Part I, Proposition 114, p. 132. Translation in [32].

  39. 39.

    p. 166.

  40. 40.

    Part II, Proposition 14, p. 16.

  41. 41.

    Part II, Proposition 22–26, pp. 32–36.

  42. 42.

    p. 43. Translation in [32].

  43. 43.

    Pars I, p. 27. Translation in [32].

  44. 44.

    p. 21. Translation in [32].

  45. 45.

    Pars I, p.116. Translation adapted from [32].

  46. 46.

    p. 47.

  47. 47.

    p. 678.

  48. 48.

    p. 261.

  49. 49.

    vol. 11, p. 610.

  50. 50.

    pp. 18–31.

  51. 51.

    I had no access to the 1647 edition therefore reference is to [10].

  52. 52.

    pp. 5–6.

  53. 53.

    p. 5.

  54. 54.

    p. 8.

  55. 55.

    pp.10–12.

  56. 56.

    pp. 14–17.

  57. 57.

    See, for instance, [140], Chap. 1; [13], Introduction; [47], Chap. 4.

  58. 58.

    vol. 4, pp. 313–314.

  59. 59.

    vol. 18, pp. 12–13.

  60. 60.

    Baliani’s reply is to Galileo’s lost letter of June 20th, 1639; [140], p. 141.

  61. 61.

    vol. 18, p. 69.

  62. 62.

    pp. 32–36.

  63. 63.

    Cavalieri seemed to appreciate Baliani’s mathematical approach [12], pp. 34–35.

  64. 64.

    The similarity of the approaches of Galileo and Ptolemy is suggested, for instance, in [72], pp. 99–115, [62], pp. 318–336.

  65. 65.

    p. 53.

  66. 66.

    p. 54.

  67. 67.

    p. 139.

  68. 68.

    p. 140.

  69. 69.

    vol. 14, pp. 343–344.

  70. 70.

    For instance, Galileo in his Dialogo sopra i due massimi sistemi declared that a heavy body will pass 100 braccia in 5 seconds, in a free fall, [83], vol. 7, p. 250. Assuming that 1 braccio is about 0.55 m (this is a current estimate), the acceleration of gravity (modern term) would be about 4.5 m/s\(^2\), much less than the true value (9.8 m/s\(^2\)) and of the value found by other experimentalists such as Mersenne ; see, for instance, [107].

  71. 71.

    Letter to Galileo August 19th, 1639. [83], vol. 18, p. 87.

  72. 72.

    pp. 41–56.

  73. 73.

    p. 27.

  74. 74.

    vol. 13, pp. 348–349.

  75. 75.

    Contacts between Baliani and Fabri are documented by Baliani’s correspondence with Grassi [140], p. 256–261, with Mersenne , and of Mersenne with Fabri’s pupil, Pierre Mousnier [84], p. 267.

  76. 76.

    p. 267.

  77. 77.

    p. 97.

  78. 78.

    To note that in the quoted letter to Galileo , July 1st, 1639, Baliani listed the components of mixed mathematics, including astronomy.

  79. 79.

    pp. 97–98.

  80. 80.

    p. 101.

  81. 81.

    p. 99.

  82. 82.

    p. 113.

  83. 83.

    pp. 265–270.

  84. 84.

    See, for instance, [109], p. 111; [60], pp. 28–29.

  85. 85.

    p. 204.

  86. 86.

    Preface, not numbered pages.

  87. 87.

    p. 97.

  88. 88.

    pp. 39–57.

  89. 89.

    pp. 43–44.

  90. 90.

    p. 229.

  91. 91.

    p. 354.

  92. 92.

    p. 226.

  93. 93.

    pp. 5–6. Translation in [123].

  94. 94.

    pp. 158–162.

  95. 95.

    p. 229.

  96. 96.

    pp. 194–205.

  97. 97.

    p. 120.

  98. 98.

    It had become common to give the space of fall in 1 s. This value played a role similar to that played today by the acceleration of gravity. A modern physicist – and also a high school student – applying the now well-known formula: \(s = 1/2 gt^ 2 \), recognizes that the space s of fall in a second is half the acceleration gravity g. At the time of Mersenne this reasoning was not possible simply because the concept of acceleration as well- defined kinematic magnitude did not exist until the works of Leonhard Euler in the first half of the eighteenth century.

  99. 99.

    For a Paris foot it can be assumed a length of 32.5 cm. For a Paris pound \(=\) 16 ounces it can be assumed in the mass of 0.489.5 kg.

  100. 100.

    vol. 1, p. 86.

  101. 101.

    vol. 1, p. 87.

  102. 102.

    vol. 7, p. 250. Galileo himself had doubts on the validity of his numbers. In fact, in a marginal addition to his own copy of the Dialogue he provided a much improved value. He had Simplicio say that a lead ball of 100 pounds would fall over 100 braccia in four pulse beats, a much more accurate value. It seems plausible that Galileo had tried the experiment after the 1639 letter to Baliani, this time directly from a high tower [20], p. 176.

  103. 103.

    In an appendix, Mersenne referred to the opinion of Nicolas-Claude Fabri de Peiresc (1580–1637) according to whom Galileo’s braccio should be greater, equal to 1.80 feet, but, said Mersenne , the result did not change substantially.

  104. 104.

    vol. 1, pp. 86–87.

  105. 105.

    For the value of CT Mersenne arrived at a result that expressed with modern symbolism is given by CT = CB \(\sin \widehat{\text {BAC}}\), which is correct. This result was already obtained by Galileo and reported on the first day of the Dialogo sopra i due massimi sistemi del mondo [83], vol. 7, p. 51. From Galileo Mersenne also resumed all the figures that relate to the inclined plane.

  106. 106.

    vol. 1, p. 111.

  107. 107.

    It should be remembered that Galileo discussed, in published work, his experiments on the fall along the inclined plane not before the Discorsi e dimostrazioni matematiche sopra due nuove scienze of 1638, whereas here Mersenne is writing in 1636.

  108. 108.

    vol. 1, p. 112.

  109. 109.

    vol. 1, p. 112.

  110. 110.

    p. 112.

  111. 111.

    Phenomena ballistica, p. 52. Translation in [150].

  112. 112.

    pp. 217–219.

  113. 113.

    pp. 125–127.

  114. 114.

    p. 135.

  115. 115.

    p. 136.

  116. 116.

    Applying the relation \(T = 2\pi \sqrt{l/g}\) valid for small oscillations, assuming \(l = 3\times 0.325 = 0.975\) m, g = 9.8 m/s\(^2\) one obtains \(T = 1.98\) s. A quarter of a period thus is about 0.5 s.

  117. 117.

    pp. 75.

  118. 118.

    p. 153. Calculating the theoretical period of a pendulum – according to modern theories – starting with an angle of 90 degrees, it is found that it exceeds by about 20% that of small oscillations. A pendulum of \(2\,\frac{1}{6} = 2.17\) feet has a period for small oscillations of \(\sqrt{(2.17/3)} = 0.85\) times less than the period of the pendulum of length 3 feet; but in large oscillations it has a period approximately equal to that of 3 feet in small oscillations. The numerical value of 2.17 feet, which Mersenne proposed without much emphasis is surprisingly close to reality and indicates either that Mersenne was lucky or that his experimental mode was very refined. I comment later that it is not easy to choose between these options.

  119. 119.

    11/7 is the approximation used by Mersenne for \( \pi / 2 \).

  120. 120.

    Actually Mersenne referred explicitly only to Baliani , citing him by name, and his De moti naturali gravium solidorum et liquidorum, Book 6, of 1646 [135], p. 156.

  121. 121.

    p. 111.

  122. 122.

    vol. 17, p. 281.

  123. 123.

    vol. 1, p. 278.

  124. 124.

    vol. 1, Livre premier des mouvemens, p. 14.

  125. 125.

    The same opinion of Galileo ; whereas Descartes and Aristotle considered the speed of light infinite.

  126. 126.

    vol. 1, Livre premier des mouvemens, p. 50.

  127. 127.

    vol. 1, Livre premier des mouvemens, p. 48.

  128. 128.

    vol. 1, Livre troisieme des mouvemens, p. 217.

  129. 129.

    vol. 1, Livre premier des mouvemens, p. 52.

  130. 130.

    vol. 1, Livre troisieme des mouvemens, pp. 213–214.

    The distance \(2\times 485 = 970\) feet corresponds to a speed of 315.25 m/s, or of 1135 km/h, a value slightly lower than that measured today in ideal environmental conditions which is around 1200 Km per hour (about 170 toises per second). Mersenne also commented on the result he had reported elsewhere, a value of 150–180 feet for the echo of one syllable, thus for the time of a seventh of second [132], vol. 1, Livre premier des mouvemens, p. 52. The extent of \( 485 \times 2 \) standing for seven syllables provides 138 feet for a syllable, a significantly lower value.

  131. 131.

    vol. 1, Livre troisieme des mouvements, p. 214.

  132. 132.

    The lieue is a unity of length corresponding to two miles, or about a one-hour walk. For Mersenne a lieue was 2500 toises and thus \(2500\times 6\times 0.325 = 4875\) m.

  133. 133.

    vol. 1, Livre troisieme des mouvemens, p. 214. Actually there are some incongruities in Mersenne’s text. First, he said that the speed of the sound is 12 toises per second, that is, 72 feet per second, instead of 69 feet, as stated before. Second, there should be a typo, because Mersenne said that the time necessary to pronounce 208 syllables is 9 s instead of 29, corresponding to 1/7 of second per syllable.

  134. 134.

    vol. 1, Livre troisieme des mouvemens, p. 220.

  135. 135.

    Ballistica et acontismologia, pp. 138–140.

  136. 136.

    p. 38.

  137. 137.

    pp. 15–16.

  138. 138.

    Praefatio, first page.

  139. 139.

    p. 246.

  140. 140.

    p. 40.

  141. 141.

    p. 53.

  142. 142.

    vol. 11, p. 126. Translation in [61]

  143. 143.

    pp. 16–19.

  144. 144.

    p. 208.

  145. 145.

    p. 49.

  146. 146.

    p. 165.

  147. 147.

    pp.150–151.

  148. 148.

    vol. 1, p. 7.

  149. 149.

    pp. 2–3.

  150. 150.

    pp. 33–35.

  151. 151.

    pp. 34–38.

  152. 152.

    pp. 499–500.

  153. 153.

    Chapter 3.

  154. 154.

    Pars posterior, p. 235.

  155. 155.

    p. I, in the subtitle.

  156. 156.

    vol. 1, p. XIX.

  157. 157.

    vol. 2, p. 419.

  158. 158.

    p. 86.

  159. 159.

    Pars prior, pp. 535–536.

  160. 160.

    Pars posterior,“An Proportiones motuum caelestium, sint scibiles a nobis in hac vita & effabiles, & An rationales omnes, an vero alique irrationales; ubi de Revolutionibus eorum omnium in idem”, p. 269.

  161. 161.

    p. 5.

  162. 162.

    Pars prior, pp. 89–91.

  163. 163.

    Pars posterior, pp. 381–397.

  164. 164.

    Pars posterior, p. 385.

  165. 165.

    p. 83.

  166. 166.

    Pars posterior, p. 383.

  167. 167.

    The measure of the Roman foot to which Riccioli is concerned can be deduced by a half foot drawn in scale 1:1 in the Almagestum novum [159], Pars prior, p. 58, resulting in about 15.4 cm. Thus Riccioli’s Roman foot is 30.8 cm. This value can be confirmed by noting that Riccioli said the Torre degli Asinelli was 312 feet high and that today the height estimate is of 97 m; which gives for a Roman foot the value of 31 cm, very close to 30.8. Considering the error of measurement both in the height of the tower and the length of drawing, the two values confirm each other.

  168. 168.

    Pars posterior, p. 385.

  169. 169.

    Note that time is expressed in seconds (\(''\)) and sixtieths of second (\('''\), or thirds), instead of seconds and tenths of second as usual today.

  170. 170.

    Pars posterior, p. 386.

  171. 171.

    Corresponding to value of the acceleration of gravity of 8.87, 9.24, 9.44 m/s\(^2\), a bit lower the real value measured today in vacuum \(\approx \)9.8 m/s\(^2\).

  172. 172.

    See for instance vol. 17, p. 281. Here a value of 15 feet and 7.5 inches, equal to 15, 625 feet is proposed, basing on the measurement of the period of a conic pendulum. Assuming for Huygens’s foot a value equal to 31.38 cm – slightly greater that the Roman foot – this gives a value \(g=9.79\) m/s\(^2\) [180], p. 32.

  173. 173.

    Pars posterior, p. 386.

  174. 174.

    Chapter 3.

  175. 175.

    Pars prior, p. 90.

  176. 176.

    For example, if reference is made to fall from 60 feet, assuming an acceleration of about 30 feet/s\(^2\) (9.8 m/s\(^ 2\)), the ball reaches the ground with the speed of about 60 feet per second. If it is supposed to be able to appreciate a half-oscillation of the pendulum, the error in the time measurement could be about 1/12 of a second, which leads to not distinguish falls that occur in a 5 (\(=\)60/12) foot fork. Notice that for the second and third series of tests the height of fall in the first time interval, could be determined from the first test of the first series. This would have given heights of fall equal to \(10 \times (6/5)^2= 14.4\), instead of 15. For the third series \(10 \times (6.5/6)^2= 17\) instead of 18. This implies that the first test of each series was evaluated independently of each other.

  177. 177.

    Pars posterior, p. 387. Translation in [90].

  178. 178.

    Pars posterior, pp. 394–395.

  179. 179.

    Pars posterior, p. 394.

  180. 180.

    Pars posterior, p. 396.

  181. 181.

    Pars posterior, p. 397.

  182. 182.

    pp. 47–48.

  183. 183.

    Chapter 2.

  184. 184.

    Proemio.

  185. 185.

    Proemio.

  186. 186.

    p. 431, first col.

  187. 187.

    p. 1.

  188. 188.

    Diffraction refers to various phenomena which occur when a wave (and light has the behavior of a wave) encounters an obstacle or a slit. It is defined as the bending of light around the corners of the obstacle or slit into the region of geometrical shadow. The term proposed by Grimaldi affirmed over the name inflection suggested by Newton in the title of his Opticks: or a treatise of the reflections, refractions, inflections and colours of light.

  189. 189.

    p. 2, col. 2.

  190. 190.

    For the experiment be successful the light intensity must be high otherwise the phenomena Grimaldi wanted to highlight may not occur.

  191. 191.

    p. 2, cols 1–2.

  192. 192.

    p. 3, cols 1–2.

  193. 193.

    p. 3, cols 2.

  194. 194.

    pp. 4–5.

  195. 195.

    p. 9.

  196. 196.

    pp. 13–14.

  197. 197.

    p. 12.

  198. 198.

    prop. 8, p. 104.

  199. 199.

    p. 111, col. 1.

  200. 200.

    p. 90.

  201. 201.

    p. 18. cols. 1–2.

  202. 202.

    p. 533, col. 2. For Grimaldi’s conception of the structure of matter see [86].

  203. 203.

    vol. 2, pp. 102–103.

  204. 204.

    p. 189, cols 1–2.

  205. 205.

    p. 218.

  206. 206.

    Preface. Not numbered pages, third page.

  207. 207.

    pp. 352–399.

  208. 208.

    p. 61.

  209. 209.

    p. 82.

  210. 210.

    p. 135.

  211. 211.

    p. 9. Translation in [176].

  212. 212.

    p. 6. Translation in [176].

  213. 213.

    pp. 6–7.

  214. 214.

    pp. 7–8.

  215. 215.

    p. 8.

  216. 216.

    Not numbered page near the end of the book; former proemio

  217. 217.

    Table of contents.

  218. 218.

    pp. 95–104.

  219. 219.

    p. 48.

  220. 220.

    In [176], p. 141, it is stressed that 3000 Florentine braccia equal 5925 English feet, or about 1.8 Km.

  221. 221.

    p. 158.

  222. 222.

    p. 163.

  223. 223.

    p. 25.

  224. 224.

    vol. 1, p. 3.

  225. 225.

    p. 15.

  226. 226.

    p. 29.

  227. 227.

    vol. 10, p. 239; 228–229.

  228. 228.

    p. 59.

  229. 229.

    pp. 1–2.

  230. 230.

    pp. 60–61.

  231. 231.

    p. 65.

  232. 232.

    p. 2415.

  233. 233.

    p. 3.

  234. 234.

    pp. 277–450.

  235. 235.

    p. 76, and related footnotes.

  236. 236.

    p. 182.

  237. 237.

    Preface.

  238. 238.

    p. 12.

  239. 239.

    pp. 1–2.

  240. 240.

    p. 1.

  241. 241.

    p. 4.

  242. 242.

    p. 7.

  243. 243.

    p. 199–200.

  244. 244.

    p. 17.

  245. 245.

    Using the modern categories of mechanics, if x is the elongation of the spring of stiffness k and v the speed of a body having mass m appended at one end of the spring, the following relation holds good \(1/mx^2+1/2mv^2= 1/2k\text {X}^2\), with X the maximum elongation of the spring (associated to a vanishing speed) – principle of conservation of mechanical energy. From this relations one can obtain \(v^2= k/m (\text {X}^2-x^2) \propto (\text {X}^2-x^2)\). But \((\text {X}^2-x^2)\), with \(X=\text {AC}\) and \(x=\text {AB}\), is proportional to the areas of the trapezoid BCDE, thus if Hooke for speed intended the value at B, his conclusion is correct.

  246. 246.

    p. 18.

  247. 247.

    Area \(\text {BCDE} = 1/2 (\text {AC} \times \text {CD} - \text {AB} \times \text {BE}) = 1/2 \tan \widehat{\text {CAD}}(\text {AC}^2-\text {AB}^2) \propto (\text {AC}^2-\text {AB}^2)\).

  248. 248.

    This statements can be justified when admitting direct proportionality of time (t) [B\(_i\)I] ] to space (y) [CB\(_i\)] and inverse proportionality of time (t) to speed (v) [B\(_i\)G]. This is in general only valid for uniform motion, but Hooke ignored this limitation, assuming v as a mean value. From the given proportionality between tyv, using a modern notation, one can write, \(y : v=t\), or equivalently \(v : \sqrt{y} = \sqrt{y} : t\), that is the relation proposed by Hooke , considering that \(v = \text {B}_i\text {G}\), \(y = \text {CB}_i\) and \(\sqrt{\text {CB}_i}=\text {B}_i \text {H}\), by construction. The cumbersome procedure allows to obtain [B\(_i\)I] by means of a geometrical construction.

  249. 249.

    p. 130.

  250. 250.

    p. 330.

  251. 251.

    p. 330.

  252. 252.

    p. 331.

  253. 253.

    p. 331.

  254. 254.

    p. 118.

  255. 255.

    pp. 288–289.

  256. 256.

    pp. 341–342.

  257. 257.

    p. 17.

  258. 258.

    vol. 5, pp. 281–291.

  259. 259.

    Experiment 1, p. 12.

  260. 260.

    Experiment 20, p. 71.

  261. 261.

    To the reader; second not numbered page.

  262. 262.

    pp. 59–60.

  263. 263.

    Notice that Walter Charleton (1619–1707) in his Phisiologia of 1654 used the term molecule to indicate aggregates of atoms, or first convention of atoms [53], p. 109.

  264. 264.

    vol. 1, pp. 524–525.

  265. 265.

    vol. 1, p. 308.

  266. 266.

    vol. 1, pp. 298–457.

  267. 267.

    pp. 574–576.

  268. 268.

    p. 26.

  269. 269.

    p. 43.

  270. 270.

    vol.3, p. 426.

  271. 271.

    vol. 1, p. 4.

  272. 272.

    p. 112.

  273. 273.

    The contents; modernized.

  274. 274.

    Marin Getaldić (1568-1626). A Dalmatian mathematician and physicist who studied in Italy, England and Belgium. He was one of the few students of François Viète.

  275. 275.

    Preface.

  276. 276.

    pp. 4–7.

  277. 277.

    pp. 8–15.

  278. 278.

    pp. 26–31.

  279. 279.

    p. 117. Only a part of the proposition of paradox VI is referred to; there is a second less essential part which is ignored.

  280. 280.

    p. 488. Boyle figure (Fig. 5.28) is identical to that of Stevin.

  281. 281.

    pp. 121–123. Boyle said that Stevin’s proof may fail of mathematical exactness [39], p. 120, and that the “learned Stevin us, having demonstrated the proposition, because of some conjectures of which the truth had been more questionable than the theorem itself” added an appendix with some “pragmatic examples” to better justify the paradox [39], p. 135. Boyle underlined that hardly Stevin had experimented them.

  282. 282.

    p. 499.

  283. 283.

    pp. 137–139.

  284. 284.

    pp. 140–141.

  285. 285.

    vol. 10, pp. 69–79.

  286. 286.

    p. 464.

  287. 287.

    vol.1, pp. 1–185.

  288. 288.

    vol.1, pp. 118–185.

  289. 289.

    vol.1, pp. 186–242.

  290. 290.

    vol. 1, Experiment 36, p. 86.

  291. 291.

    vol.1, Experiment 4, p. 18.

  292. 292.

    vol.1, Experiment 1, p. 11.

  293. 293.

    p. 493.

  294. 294.

    A defense of the doctrine touching the spring and weight of the air, Chap. V.

  295. 295.

    The values e of columns E are obtained according a relation that with a modern language reads: \( e=\frac{48}{a} \times 29 \frac{2}{16} \) where a is the value indicated in the first column A. Notice however that because Boyle has not the modern concept of pressure, intended as force per unit of surface. his pressure is simply a force. So most probably Boyle would not understood the modern formulation of his law.

  296. 296.

    vol. 1, pp. 156–160.

  297. 297.

    An examen of the greatest part of Mr. Hobbs’ dialogus physicus de natura aeris, p. 59 [297]

  298. 298.

    pp. 148–182.

  299. 299.

    p. 152. Translation in [122].

References

  1. Anstey PR (2000) The philosophy of Robert Boyle. Routledge, London

    Google Scholar 

  2. Anstey PR (2002) Locke, Bacon and natural history. Early Science and Medicine 7(1):65–92

    Google Scholar 

  3. Anstey PR (2005) Experimental versus speculative natural philosophy. In: Anstey PR, Schuster JA (eds) (2005) The science of nature in the seventeenth century. Springer, Dordrecht

    Google Scholar 

  4. Anstey PR, Vanzo A (2000) The origins of early modern experimental philosophy. Intellectual History Review 22(4):499–518

    Google Scholar 

  5. Armitage A (1950) “Borell’s hypothesis” and the rise of celestial mechanics, Annals of Science 6(3):268–282

    Google Scholar 

  6. Baldini U (2003) The Academy of mathematics of the Collegio Romano from 1533 to 1612. In: Feingold M (ed) (2003) Jesuit science and the republic of letters. MIT, Cambridge Massachusetts, pp. 47–98

    Google Scholar 

  7. Baldwin MR (1985) Magnetism and the anti-Copernican polemic. Journal for the History of Astronomy 16(3):155–173

    Google Scholar 

  8. Baliani GB (1638) De motu naturali gravium solidorum. Farroni et al, Genoa

    Google Scholar 

  9. Baliani GB (1646) De motu naturali gravium solidorum et liquidorum. Farroni et al, Genoa

    Google Scholar 

  10. Baliani GB (1653) Trattato di Gio. Battista Baliano della pestilenza: ove si adducono pensieri nuovi in più materie. Guasco, Genoa

    Google Scholar 

  11. Baliani GB (1666) Di Gio. Battista Baliani Opere diverse. Calenzani, Genoa

    Google Scholar 

  12. Baliani GB (1792) Opere diverse di Gio. Battista Baliani patrizio genovese; aggiuntavi nell’aviso a chi legge una compendiosa notizia della di lui vita. Franchelli, Genoa

    Google Scholar 

  13. Baliani GB (1998) De motu naturali gravium solidorum et liquidorum. Edited and translated into Italian by Baroncelli G. Giunti, Florence

    Google Scholar 

  14. Ball Rouse WW (1893) An essay on Newton’s principia. Macmillan, New York

    Google Scholar 

  15. Bazerman C (1988) Shaping written knowledge. The University of Wisconsin Press, Madison

    Google Scholar 

  16. Bennett JA (1986) The mechanics’ philosophy and the mechanical philosophy. History of Science 24:1–27

    Google Scholar 

  17. Beretta M (2000) At the source of Western science: The organization of experimantalism at the Accademia del cimento (1637–1667). Notes and Records of The Royal Society of London 54(2):131–151

    Google Scholar 

  18. Bertoloni Meli D (1998) Shadows and deception: From Borelli’s “Theoricae” to the “Saggi” of the Cimento. The British Journal for the History of Science 31(4):383–402

    Google Scholar 

  19. Bertoloni Meli D (2008) The collaboration between anatomists and mathematicians in the mid-seventeenth century with a study of images as experiments and Galileo’s role in Steno’s “Miology”. Early Science and Medicine 13(6):665–709

    Google Scholar 

  20. Bertoloni Meli D (2004) The role of numerical tables in Galileo and Mersenne. Perspectives on Science 12(2):164–190

    Google Scholar 

  21. Biancani G (1620) Sphaera mundi seu cosmographia demonstrativa, ac facili methodo tradita. Bonomi, Bologna

    Google Scholar 

  22. Biancani G (1996) De mathematicarum natura dissertatio. English Translation by Klima G. In: Mancosu P (1996) Philosophy of mathematics and mathematical practice in the seventeenth century. Oxford University Press, Oxford, pp. 178–212

    Google Scholar 

  23. Birch T (1756) History of the Royal Society of London (2 vols). Millar, London

    Google Scholar 

  24. Boas Hall M (1992) The library and archives of the Royal society 1660–1990. Arrowsmith, Bristol

    Google Scholar 

  25. Boas Hall M (1991) Promoting experimental learning. Cambridge University Press, Cambridge

    Google Scholar 

  26. Di Teodoro EM, Bedogni R, Bonoli F (2010) I primi esperimenti sulla caduta dei gravi: Galileo e Riccioli. Giornale di Astronomia 36(3):32–40

    Google Scholar 

  27. Borelli GA (1666) Theoricae Mediceorum planetarum ex causis physicis deductae. Ex Typographia SMD, Florence

    Google Scholar 

  28. Borelli GA (1667) De vis percussionis liber. Monti, Bologna

    Google Scholar 

  29. Borelli GA (1670) De motionibus naturalibus a gravitate pendentibus. Ferri, Reggio Calabria

    Google Scholar 

  30. Borelli GA (1680–1681) De motu animalium (2 vols). Benardo, Rome

    Google Scholar 

  31. Borelli GA (1743) De motu animalium (ac De motu muscolorum, et de effervescitia, et fermentatione by Bernoulli Johann). Grosse, The Hague

    Google Scholar 

  32. Borelli GA (1989) On the movement of animals. Translation into English by Maquet P. Springer, Berlin-Heidelberg

    Google Scholar 

  33. Borgato MT (2002) Riccioli e la caduta dei gravi. In: Borgato MT (ed) (2002) Giambattista Riccioli e il merito scientifico dei Gesuiti nell’età barocca. Olschki, Florence, pp. 76–85

    Google Scholar 

  34. Boschiero L (2002) Natural philosophizing inside the late seventeenth-century tuscan court. The British Journal for the History of Science 35(4):383–410

    Google Scholar 

  35. Boschiero L (2010) Translation, experimentation and the spring of air: Richard Waller’s essayes of natural experiment. Notes and Records of the Royal Society of London 64(1):67–83

    Google Scholar 

  36. Boyle R (1664) Experiments and considerations touching colours. Herringman, London

    Google Scholar 

  37. Boyle R (1666) Hydrostatical paradoxes made out of new experiments. Hall, London

    Google Scholar 

  38. Boyle R (1682) New experiments physico-mechanical touching the air. Flesher, London

    Google Scholar 

  39. Boyle R (1725) The philosophical work of the honourable Robert Boyle (3 vols). Summarized and edited by Shaw. Innys W & J, London

    Google Scholar 

  40. Boyle R (1772) The works of the honourable Robert Boyle (6 vols). Rivington J & F & [...], London

    Google Scholar 

  41. Boyle R (1999–2000) The works of Robert Boyle (14 vols). Hunter M, Davis EB (eds). Pickering & Chatto, London

    Google Scholar 

  42. Bussotti P (2015) The complex itinerary of Leibniz’s planetary theory. Birkhäuser, Dordrechtr

    Google Scholar 

  43. Cabeo N (1629) Philosophia magnetica. Kinckrium, Cologne

    Google Scholar 

  44. Cabeo N (1646) In quatuor libros meteorologicorum Aristotelis commentaria (2 vols). Corbelletti, Rome

    Google Scholar 

  45. Capecchi D (2013) Experiments and principles of natural philosophy in Baliani’s epistemology. Proceedings SISFA 2013, Pavia, to appear

    Google Scholar 

  46. Capecchi D (2014) A treatise on the plague by Giovanni Battista Baliani. Proceedings SISFA 2014, Florence, pp. 47–54

    Google Scholar 

  47. Capecchi D (2014) The problem of motion of bodies. Springer, Dordrecht

    Google Scholar 

  48. Capecchi D, Ruta G (20134) Strength of materials and theory of elasticity in 19th century Italy. Springer, Dordrecht

    Google Scholar 

  49. Caruana L (2008) The Jesuits and the quiet side of the scientific revolution. In: Worcester T (ed) (2008) The Cambridge companions to the Jesuits. Cambridge University Press, Cambridge, pp. 243–262

    Google Scholar 

  50. Caverni R (1891–1900) Storia del metodo sperimentale in Italia (6 vols). Civelli, Florence

    Google Scholar 

  51. Chalmers GK (1936) Three terms of the corpuscularian philosophy. Modern Philology 33(3):243–260

    Google Scholar 

  52. Chalmers GK (1937) The lodestone and the understanding of matter in seventeenth century England. Philosophy of Science 4(1):75–95

    Google Scholar 

  53. Charleton T (1654) Physiologia Epicuro-Gassendo-Charltoniana, or a fabrick of science natural upon the hypothesis of atoms. Newcomb, London

    Google Scholar 

  54. Clericuzio A (1990) A redefinition of Boyle’s chemistry and corpuscular philosophy. Annals of Science 47(6): 561–589

    Google Scholar 

  55. Clericuzio A (2000) Elements, principles and corpuscles. Springer, Dordrecht

    Google Scholar 

  56. Costantini C (1969) Baliani e i gesuiti. Giunti-Barbera, Florence

    Google Scholar 

  57. Cozzoli D (2010) On the development of Mersenne’s optics. Perspectives on Sciences 18(1):9–25

    Google Scholar 

  58. Craig M (2006) With Aristotelians like these, who needs anti-Aristotelians? Chymical corpuscular matter theory in Niccolò Cabeo’s “Meteorology”. Early Science and Medicine 11(2):135–161

    Google Scholar 

  59. Daxecker F (1994): Further studies by Christoph Scheiner concerning the optics of the eye. Documenta Ophtamological 86:153–161

    Google Scholar 

  60. Damerow P, Freudenthal G, Mclaughlin P, Renn J (1991) Exploring the limits of preclassical mechanics. Springer, New York

    Google Scholar 

  61. De Ceglia FP (2003) Additio illa non videtur edenda: Giuseppe Biancani reader of Galileo in an unedited censored text. In: Feingold M (ed) (2003) The new science and Jesuit science: Seventeenth century perspectives. Kluwer, Dordrecht, pp. 159–186

    Google Scholar 

  62. De Pace A (1993) Le matematiche e il mondo. Francoangeli, Milan

    Google Scholar 

  63. Dear P (1984) Marin Mersenne and the probabilistic roots of “mitigated scepticism”. Journal of the History of Philosophy 22(2):173–205

    Google Scholar 

  64. Dear P (1988) Mersenne and the learning in the schools. Cornell University Press, Ithaca

    Google Scholar 

  65. Dear P (1995) Discipline & experience. The University of Chicago Press, Chicago

    Google Scholar 

  66. Descartes R (1644) Principia philosophiae. Ludovicum Elzevirium, Amsterdam

    Google Scholar 

  67. Descartes R (1964–1975) Oeuvres de Descartes. Edited by Adam C and Tannery P. Vrin, Paris

    Google Scholar 

  68. Gillispie CC (ed) (1971–1980) Dictionary of scientific biography. Scribner, New York

    Google Scholar 

  69. Dinis A (2003) Giovanni Battista Riccioli and the science of his time. In: Feingold M (ed) (2003) Jesuit sciences and the republic of letter. MIT, Cambridge Massachusetts

    Google Scholar 

  70. Drake S (1960) On certain deductions contained in M. Moscovici’s paper Sur l’incertitude des rapports entre experience et théorie au 17e siècle. Physis 2(3):211–212

    Google Scholar 

  71. Drake S (1967) A seventeenth-century Malthusian. Isis 58(3):401–402

    Google Scholar 

  72. Drake S (1978) Ptolemy, Galileo, and scientific method. Studies in History and Philosophy of Science 9–3 (1978) 99–115

    Google Scholar 

  73. Duhem P (1913–1959) Le système du monde, histoire des doctrines cosmologiques de Platon à Copernic (10 vols). Hermann, Paris

    Google Scholar 

  74. Edwards M (2007) Aristotelism, Descartes and Hobbes. The Historical Journal 50(2):449–464

    Google Scholar 

  75. Engelberg D, Gertner, M (1981) A marginal note of Mersenne concerning the ’Galilean Spiral’. Historia Mathematica, 8(1):1–14

    Google Scholar 

  76. Fabri H (1646) Tractatus physicus de motu locali. Champion, Lyon

    Google Scholar 

  77. Farrel AP (1970) The Jesuit ratio studiorum of 1599. Conference of Major Superiors of Jesuits, Washington

    Google Scholar 

  78. Feingold M (ed) (2003) Jesuit science and the republic of letters. MIT, Cambridge Massachusetts

    Google Scholar 

  79. Feingold M (ed) (2003) The new science and Jesuit science: Seventeenth century perspectives. Kluwer, Dordrecht

    Google Scholar 

  80. Feingold M (2003) The grounds for conflict: Grassi, Galileo, and posterity. In: Feingold M (ed) (2003) Jesuit science and the republic of letters. MIT, Cambridge Massachusetts, pp. 121–158

    Google Scholar 

  81. Fletcher JE (2001) A study of the life and works of Athanasius Kircher, ‘Germanus incredibilis’. Brill, Leiden

    Google Scholar 

  82. Galilei G (1638) Discorsi e dimostrazioni matematiche sopra due nuove scienze (1638). In: Favaro A (ed) (1890–1909) Le opere di Galileo Galilei (National edition) (20 vols). Barbera, Florence, vol. 8, pp. 39–362

    Google Scholar 

  83. Galilei G (1890–1909) Le opere di Galileo Galilei (National edition) (20 vols). Edited by Favaro A. Barbera, Florence

    Google Scholar 

  84. Galluzzi P (2001) Gassendi and l’affaire Galilée of the laws of motion. Science in Context 14:239–275

    Google Scholar 

  85. Garber D (2004) On the frontlines of the scientific revolution: How Mersenne learned to love Galileo. Perspectives on Sciences 12(2):135–163

    Google Scholar 

  86. Gatto R (2000) La struttura della materia nel “Physico-mathesis de lumine” di Francesco Maria Grimaldi. In: Festa E, Gatto R (eds) (2000) Atomismo e continuo nel XVII secolo. Vivarium, Naples

    Google Scholar 

  87. Gaukroger S (2006) The emergence of a scientific culture. Science and the shaping of modernity, 1210–1685. Oxford University Press, Oxford

    Google Scholar 

  88. Gaukroger S, Schuster J (2002) The hydrostatic paradox and the origins of Cartesian dynamics. Studies in History and Philosophy of Sciences 33:535–572

    Google Scholar 

  89. Gilbert W (1600) De magnete, magneticisque corporibus, et de magno magnete tellure: physiologia nova, plurimis & argumentis, & experimentis demonstrata. Short, London

    Google Scholar 

  90. Graney CM (2015) Setting aside all authority: Giovanni Battista Riccioli and the science against Copernicus in the age of Galileo. University of Notre Dame, Notre Dame (Indiana)

    Google Scholar 

  91. Gregory J (1968) An account of a controversy betwixt Stephano de Angelis, professor of the mathematicks in Padua, and Joh. Baptista Riccioli jesuite. Philosophical Transactions (1665–1678), vol. 3, pp. 693–698

    Google Scholar 

  92. Grimaldi FM (1665) Physico-mathesis de lumine, coloribus, et iride. Heir Benati, Bologna

    Google Scholar 

  93. Grosslight J (2013) Small skills, big networks: Marin Mersenne as mathematical intelligencer. History of Science 51(3):337–374

    Google Scholar 

  94. Gunther RT (1923-) Early science in Oxford (14 vols). Clarendon Press, Oxford

    Google Scholar 

  95. Harris SJ (1996) Confession-building, long-distance networks, and the organization of Jesuit science. Jesuits and the knowledge of nature. Early Science and Medicine 1(3):287–318

    Google Scholar 

  96. Hauksbee F (1708) Touching the difficulty of separating two hemispheres upon the injecting of an atmosphere of air in their outward surface, without withdrawing the included air (1706). Philosophical Transactions of the Royal Society 25 (305):2415–2417

    Google Scholar 

  97. Henry J (1982) Atomism and eschatology: Catholicism and natural philosophy in the interregnum. The British Journal for the History of Science 15(3):211–239

    Google Scholar 

  98. Holmes FL (1987) Scientific writing and scientific discovery. Isis 78(2): 220–235

    Google Scholar 

  99. Hooke R (1665) Micrographia. Martyn & Allestry, London

    Google Scholar 

  100. Hooke R (1678) Lectures de potentia restitutiva or the spring. Martyn, London

    Google Scholar 

  101. Hooke R (1705) The posthumous works of Dr. Robert Hooke. Edited by Waller. Smith & Walford, London

    Google Scholar 

  102. Huygens C (1888–1950) Oeuvres complètes de Christiaan Huygens (22 vols). Nijhoff, The Haye

    Google Scholar 

  103. Kircher a (1631) Ars magnesia. Zinck, Würzburg

    Google Scholar 

  104. Kircher A (1643) Magnes sive de arte magnetica (1641). Kalcovia, Cologne

    Google Scholar 

  105. Knowles Middleton WE (1969) L’expérience du mouvement. Jean-Baptiste Baliani, disciple et critique de Galilée by Serge Moscovici. Isis 60(1):120–121

    Google Scholar 

  106. Koyré A (1952) La mécanique céleste de J. A. Borelli. Revue d’histoire des sciences et de leurs applications 5:101–138

    Google Scholar 

  107. Koyré A (1953) An experiment in measurement. Proceedings of the American Philosophical Society 97(2):222–237

    Google Scholar 

  108. Koyré A (1955) A documentary history of the problem of fall from Kepler to Newton. Transactions of the American Philosophical Society 45:327–395

    Google Scholar 

  109. Koyré A (1966) Études galiléennes. Hermann, Paris

    Google Scholar 

  110. Koyré A (1973) The astronomical revolution: Copernicus, Kepler, Borelli (1961). Translated into English by Maddison RE. Hermann, Paris

    Google Scholar 

  111. Lattis JM (1994) Between Copernicus and Galileo. The University of Chicago Press, Chicago

    Google Scholar 

  112. Laudan L (1968) Theories of scientific method from Plato to Mach. History of Science 7:1–63

    Google Scholar 

  113. Lavaggi A (2004) Attività e propensioni scientifiche in Liguria nei secoli XVI E XVII. Balbisei. Ricerche Storiche Genovesi 1:93–115

    Google Scholar 

  114. Lenoble R (1943) Mersenne ou la naissance du mécanisme. Vrin, Paris

    Google Scholar 

  115. Lindberg DC (review) (1969) Physico-mathesis de lumine, coloribus, et iride by Francesco Maria Grimaldi. Isis 60(1):119–1190

    Google Scholar 

  116. Lohr CH (1988) The sixteenth-century transformation of the Aristotelian natural philosophy. In: Kessler E et al. (eds) (1988) Aristotelismus und Renaissance. In Memoriam Smith CB. Harrassowitz, Wiesbaden, pp. 88–99

    Google Scholar 

  117. Lohr CH (1991) The sixteenth-century transformation of the Aristotelian division of the speculative sciences. International Archives of the History of Ideas 124:49–58

    Google Scholar 

  118. Lynch WT (2001) Solomon’s child. Method in the early Royal Society of London. Stanford University Press, Stanford

    Google Scholar 

  119. MacDonnel J (1989) Jesuit geometers. Vatican Observatory Foundation, Vatican City

    Google Scholar 

  120. Maffioli (2011) “La ragione del vacuo”: Why and how Galileo measured the resistance of vacuum. Galilaeana 8:73–104

    Google Scholar 

  121. Magalotti L (ed) (1841) Saggi di naturali esperienze (1667). Tipografia Galileiana, Florence

    Google Scholar 

  122. Magie WF (1969) A source book in physics. Harvard University Press, Cambridge Massachusetts

    Google Scholar 

  123. Malet A, Cozzoli D (2010) Mersenne and mixed mathematics. Perspectives on Science 18(1):1–8 (2010)

    Google Scholar 

  124. Mancosu P (1996) Philosophy of mathematics and mathematical practice in the seventeenth century. Oxford University Press, Oxford

    Google Scholar 

  125. Mariotte E (1686) Traité du mouvement des eaux. Michallet, Paris

    Google Scholar 

  126. Mariotte E (1740) Oeuvres de Mariotte. Neaulme, La Hate

    Google Scholar 

  127. Meinel C (1988) Early seventeenth-century atomism: Theory, epistemology, and the insufficiency of experiment. Isis 79(1):68–103

    Google Scholar 

  128. Mersenne M (1624) Traité de l’harmonie universelle. Baudry, Paris

    Google Scholar 

  129. Mersenne M (1625) La verité des sciences. Du Bray, Paris

    Google Scholar 

  130. Mersenne M (1634) Les preludes de l’harmonie universelle. Guenon, Paris

    Google Scholar 

  131. Mersenne M (1634) Les mechaniques de Galilée. Guenon, Paris

    Google Scholar 

  132. Mersenne M (1636) Harmonie universelle. Cramoisy, Paris

    Google Scholar 

  133. Mersenne M (1637) Second partie de l’harmonie universelle. Ballard, Paris

    Google Scholar 

  134. Mersenne M (1644) Cogitata physico-mathematica. Bertier, Paris

    Google Scholar 

  135. Mersenne M (1647) Novarum observationum physico-mathematicarum tomus III. Bertier, Paris

    Google Scholar 

  136. Mersenne M (1651) L’optique et la catoptrique du reverend pere Mersenne minime. Nouvellement mise en lumiere, apres la mort de l’autheur. Langlois (widow), Paris

    Google Scholar 

  137. Mersenne M (1938–1988) Correspondance du P. Marin Mersenne, religieux minime (17 vols). Edited by De Waard C, Pintard R, Rochot B, Beaulieu A. PUF and CNRS, Paris

    Google Scholar 

  138. Moscovici S (1960) Sur l’incertitude des rapports entre experience et théorie au 17e siècle: la loi de Baliani. Physis 2(1):14–43

    Google Scholar 

  139. Moscovici S (1965) Les développements historiques de la théorie galiléenne des marées. Revue d’Histoire des Sciences et de leurs Applications 18:129–240

    Google Scholar 

  140. Moscovici S (1967) L’expérience du mouvement. Jean-Baptiste Baliani disciple et critique de Galilée. Paris: Hermann

    Google Scholar 

  141. Moscovici S (1973) Baliani e i gesuiti by Claudio Costantini (review). Annales. Histoire, Sciences sociales 6:1527

    Google Scholar 

  142. Moyer AE (1977) Robert Hooke’s ambiguous presentation of “Hooke’s law”. Isis 68(2):266–275

    Google Scholar 

  143. Musschenbroek P (1731) Tentamina experimentorum naturalium captorum in Academia del cimento. Vebeek J & H, Leiden

    Google Scholar 

  144. Neri J (2008) Between observation and image: representations of insects in Robert Hooke’s “Micrographia”. Studies in the History of Art 69:82–107

    Google Scholar 

  145. Newman WR (1996) The alchemical sources of Robert Boyle’s corpuscular philosophy. Annals of Science 53(6):567–585

    Google Scholar 

  146. Newton I (1959–1960) The correspondence of Isaac Newton (2 vols). Cambridge University Press, Cambridge

    Google Scholar 

  147. Nonnoi G (1988) Il pelago d’aria. Bulzoni, Rome

    Google Scholar 

  148. Oldemburg H (1665–1666) Introduction. Philosophical Transactions of the Royal Society of London 1:1–16

    Google Scholar 

  149. Oldroyd DR (1972). Robert Hooke’s methodology of science as exemplified in his ‘Discourse of earthquakes’. The British Journal for the History of Science 6(2):109–130

    Google Scholar 

  150. Palmerino R (1999) Infinite degrees of speed: Marin Mersenne and the debate over Galileo’s law of free fall. Early Science and Medicine 4(4):269–328.

    Article  MathSciNet  Google Scholar 

  151. Park K, Daston L (eds) (2008) Early modern science. The Cambridge History of Science, vol 3. Cambridge University Press, Cambridge

    Google Scholar 

  152. Pascal B (1663) Traitez de l’équilibre des liqueurs, et de la pesanteur de la masse de l’air. In: Pascal B (1801) Oeuvres de Blaise Pascal. Lefèvre, Paris, vol. 4, pp. 179–211

    Google Scholar 

  153. Petruzzelli G (2012) La luce e i colori. Il caso Grimaldi tra scienza e fede. Progedit, Bari

    Google Scholar 

  154. Popkin R (2003) The history of scepticism from Savonarola to Bayle. Oxford University Press, Oxford

    Google Scholar 

  155. Purrington RD (2009) The first professional scientist. Robert Hooke and the Royal Society of London. Birkhäuser, Berlin

    Google Scholar 

  156. Rankin A (2007) Becoming an expert practitioner: Court experimentalism and the medical skills of Anna of Saxony (1532–1585). Isis 98:23–53

    Google Scholar 

  157. Rappaport R (1986) Hooke on earthquakes: Lectures, strategy and audience. The British Journal for the History of Science 19(2):129–146

    Google Scholar 

  158. Riccati V (1757) Opusculorum ad res physicas, & mathematicas pertinentium. Volpe, Bologna

    Google Scholar 

  159. Riccioli GB (1651) Almagestum novum astronomiam veterem novamque complectens observatiobus aliorum et propriis novisque theorematibus, problematibus ac tabulis promotam (Pars prior and pars posterior). Benati, Bologna

    Google Scholar 

  160. Riccioli GB (1665) Astronomia reformata. Benati, Bologna

    Google Scholar 

  161. Roberval GO (1644) Aristarchi Samii. De mundi systemate, partibus, & motibus eiusdem. Bertier, Paris

    Google Scholar 

  162. Savelli R (1953) Giovan Battista Baliani e la natura della luce. Tipografia Compositori, Bologna

    Google Scholar 

  163. Scheiner C (1619) Oculus hoc est: fundamentum opticum. Agricola, Innsbruck

    Google Scholar 

  164. Scheiner C (1630) Rosa ursina. Fei, Bracciano

    Google Scholar 

  165. Serrus C (1947) La mécanique de J. A. Borelli et la notion d’attraction. Revue d’Histoire des Sciences et de leur Applications 1:9–25

    Google Scholar 

  166. Shapin S, Shaffer S (1985) Leviathan and the air-pump. Hobbes, Boyle, and the experimental life. Princeton University Press, Princeton

    Google Scholar 

  167. Shapin S (1988) Robert Boyle and mathematics: reality, representatio, and experimental practice. Science in Context 2(1):23–58

    Google Scholar 

  168. Shapin S (1996) The scientific revolution. The University of Chicago Press, Chicago

    Google Scholar 

  169. Shapiro AE (1989) Huygens’ ‘Traité de la Lumière’ and Newton’s ‘Opticks’: Pursuing and eschewing hypotheses. Notes and Records of the Royal Society of London 43(2):223–247

    Google Scholar 

  170. Somaglia A (1983) Il lume di G.B. Baliani. Storia delle matematiche in Italia. Istituti di matematica delle facoltà di scienze e ingegneria, Università di Cagliari, pp. 395–403

    Google Scholar 

  171. Sprat T (1667) The history of the Royal society of London for the improving of natural knowledge. Martyn & Allestry, London

    Google Scholar 

  172. Stevin S (1605) Tomus quartum mathematicorum hypomnematum de statica. Ex officina Patii, Leiden

    Google Scholar 

  173. Stevin S (1634) Les oeuvres mathematiques de Simon Stevin, par Albert Girard. Elsevier, Leiden

    Google Scholar 

  174. Udias A (2015) Jesuit contribution to science. Springer, Dordrecht

    Google Scholar 

  175. Vailati G (1907) Sul miglior modo di definire la massa in una trattazione elementare della meccanica. In: Vailati G (1911) Scritti di Giovanni Vailati. Seeber & Barth, Florence-Leipzig, pp. 799–804

    Google Scholar 

  176. Waller R (ed) (1684) Essayes of natural experiments made in the Academie del Cimento. Alsep, London

    Google Scholar 

  177. Webster C (1965) The discovery of Boyle’s law, and the concept of the elasticity of air in the seventeenth century. Archive for History of Exact Sciences 2(6):441–502

    Google Scholar 

  178. Wilson LG (1961) William Croone’s theory of muscular contraction. Notes and Records of the Royal Society of London 16(2):158–178

    Google Scholar 

  179. Winterton F (1887) Philosophy among the Jesuits. Mind 12(46):254–274

    Google Scholar 

  180. Yoder JG (1988) Unrolling time. Christian Huygens and the mathematization of nature. Cambridge University Press, Cambridge

    Google Scholar 

  181. Zouckermann R (1982) Poids de l’air et pression atmosphérique. Physis 24(2):133–156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Capecchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Capecchi, D. (2018). Post-Galilean Epistemology. Experimental Physico-Mathematica. In: The Path to Post-Galilean Epistemology. History of Mechanism and Machine Science, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-319-58310-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58310-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58309-9

  • Online ISBN: 978-3-319-58310-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics