Skip to main content

Galilean Epistemology

  • Chapter
  • First Online:
The Path to Post-Galilean Epistemology

Part of the book series: History of Mechanism and Machine Science ((HMMS,volume 34))

  • 729 Accesses

Abstract

The role of Galileo in the history of modern science has been and will always be subject to debate. If it is not true that he invented the scientific method – it is of Hellenistic origin – based on the comparison between theory and experiment, it is true that he made a fundamental contribution to its clarification and dissemination. If Galileo was unclear about some of his scientific results and also on epistemological aspects, they were all solved by his colleagues and students. Castelli, Torricelli, Cavalieri, and Viviani stand out among them. Cavalieri and Torricelli generalized the uncertain Galilean principle of inertia bringing it to its modern form, which was only implicit in Galileo. Viviani in his biography attributed to his master a purely empirical method, charging it with experimental activities in many sectors; in addition to falling bodies, he also took care of thermology and magnetism experiments. Although the description of Viviani was most probably not faithful, it represents a sign that Galileo had transmitted to his heirs a method in which the role of experiment was crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    vol. 6, p. 232.

  2. 2.

    vol. 6, pp. 347–348.

  3. 3.

    vol. 7, p. 60.

  4. 4.

    vol. 6, p. 296.

  5. 5.

    vol. 1, p. 285.

  6. 6.

    vol. 8, p. 175.

  7. 7.

    vol. 8, p. 202. Translation in [73].

  8. 8.

    vol. 6, p. 237. Translation [42].

  9. 9.

    p. 165.

  10. 10.

    pp. 151–188.

  11. 11.

    p. 162.

  12. 12.

    pp. 58–59.

  13. 13.

    vol. 2, pp. 261–266.

  14. 14.

    vol. 8, p. 197.

  15. 15.

    vol. 8, p. 197. Translation in [73].

  16. 16.

    vol. 8, p. 198.

  17. 17.

    vol. 8, p. 202.

  18. 18.

    pp. 8–9.

  19. 19.

    vol. 2, pp. 267–276.

  20. 20.

    pp. 267–276. Even the modern infinitesimal analysis, from the proportionality between speed (v) and space (s) leads to an absurd, although in a different manner. Indeed the proportionality between v and s in a modern notation reads as \(v = ks \), k being a constant of proportionality. This relation can be written as a differential equation in the form: \(ds/dt = ks\). It, after integration, leads to the relation \(s = S_0e^{kt}\), which if one assumes \(s = 0\) for \(t = 0\), implies \(S_0 = 0\) and then \(s = 0\) for each value of the time, leading to an absurd result: one assumes a downward motion and comes to the conclusion that this motion does not exist; thus it is not possible that the speed increases proportionally to the space of fall, at least if one starts from rest.

  21. 21.

    vol. 8, p. 197.

  22. 22.

    vol. 8, p. 273.

  23. 23.

    vol. 17, pp. 90–91.

  24. 24.

    vol. 18, pp. 12–13.

  25. 25.

    p. 205.

  26. 26.

    The mathematical physicist of the nineteenth century, before introduced definitions that, in fact, inspired by physics, were completely detached from it officially. Then he drew inspiration from these definitions to develop mathematical theories (different from the traditional ones, at that time the Euclidean geometry and calculus). Mathematics then gave its formal system to develop arguments and completely rigorous “histories” that did not strictly concern the purely mathematical world. Only in the twentieth century, with the clarification of the axiomatic and hypothetical deductive methods, was this function absolved by formal logic.

  27. 27.

    pp. 324–327.

  28. 28.

    vol. 2, pp. 211–212. Translation in [49].

  29. 29.

    vol. 4, pp. 108–109.

  30. 30.

    p. 145.

  31. 31.

    p. 98.

  32. 32.

    p. 102.

  33. 33.

    vol. 5, pp. 349–370.

  34. 34.

    p. 235.

  35. 35.

    vol. 5, p. 351.

  36. 36.

    p. 274.

  37. 37.

    p. 8.

  38. 38.

    vol. 4, pp. 13–16.

  39. 39.

    vol. 4, p. 521.

  40. 40.

    pp. 408, 410.

  41. 41.

    pp. 32–35.

  42. 42.

    p. 43.

  43. 43.

    p. 22.

  44. 44.

    p. 199.

  45. 45.

    p. 66; p. 501.

  46. 46.

    p. 606.

  47. 47.

    pp. 115–116.

  48. 48.

    pp. 212–213.

  49. 49.

    p. 158.

  50. 50.

    pp. 144–145.

  51. 51.

    pp. 142–143.

  52. 52.

    p. 30.

  53. 53.

    p. 271.

  54. 54.

    pp. 240–265.

  55. 55.

    p. 28.

  56. 56.

    vol. 10, p. 115.

  57. 57.

    In the following I consider the two laws equivalent, and for simplicity I always speak about the fall as the law of odd numbers.

  58. 58.

    This is the same argument adduced by Torricelli in Sect. 4.5.2.1.

  59. 59.

    vol. 13, p. 348.

  60. 60.

    vol. 7, p. 75. Translation in [74].

  61. 61.

    p. 115.

  62. 62.

    pp. 348–349.

  63. 63.

    p. 203.

  64. 64.

    pp. 212–213. Translation in [73].

  65. 65.

    p. 154.

  66. 66.

    The law is consistent with the increase of speed with time, as can be easily proved.

  67. 67.

    p. 208, Theorem 1, Proposition 1.

  68. 68.

    p. 213. Translation in Galileo 1656.

  69. 69.

    p. 524.

  70. 70.

    p. 350.

  71. 71.

    pp. 158–159.

  72. 72.

    p. 173. Translation in [68].

  73. 73.

    vol. 8, pp. 371–372. Translation in [49].

  74. 74.

    p. 147r.

  75. 75.

    p. 4.

  76. 76.

    pp. 180–181.

  77. 77.

    vol. 4, p. 275.

  78. 78.

    p. 379. Translation [62].

  79. 79.

    vol. 1, p. 383.

  80. 80.

    vol. 4, p. 67.

  81. 81.

    vol. 4, p. 69.

  82. 82.

    p. 159.

  83. 83.

    For the causal role attributed to mathematics in the Renaissance see, for example, [11].

  84. 84.

    p. 187.

  85. 85.

    p. 140.

  86. 86.

    p. 140.

  87. 87.

    pp. 140–141.

  88. 88.

    p. 142.

  89. 89.

    p. 142.

  90. 90.

    pp. 106, 152.

  91. 91.

    p. 237.

  92. 92.

    vol. 7, pp. 260–261. Translation in [74].

  93. 93.

    p. 51.

  94. 94.

    p. 55.

  95. 95.

    p. 59.

  96. 96.

    p. 59.

  97. 97.

    For a history of the concept of horror vacui, see [83], pp. 329–355.

  98. 98.

    Galileo was never explicit about the role that the vacuum played in his atomistic conception. Hero’s theory is attributed to him that vacuum existed in nature only as minute elements of separation between the atoms (see [12], pp. 433–435; [7], pp. 91–164; p. 152). But perhaps the matter is more complicated [111], p. XX).

  99. 99.

    vol. 8, p. 60.

  100. 100.

    p. 60.

  101. 101.

    p. 65.

  102. 102.

    pp. 121–126.

  103. 103.

    p. 61.

  104. 104.

    p. 67.

  105. 105.

    See, in this regard, the extensive bibliography in [115], pp. 482–485. Also precious is the bibliography in [7], pp. 91–164.

  106. 106.

    The prudence of Galileo in speaking of atoms could be sought in the political climate of the time. According to many religious, believing in atoms involved denial of the dogma of the Eucharist as it was accepted by the Council of Trent (See [115]).

  107. 107.

    vol. 4, pp. 63–142.

  108. 108.

    vol. 6, pp. 197–372.

  109. 109.

    The two terms, non-quanti and indivisible seem to be used interchangeably by Galileo , which still favors the first.

  110. 110.

    p. 96.

  111. 111.

    p. 96. Translation in [73].

  112. 112.

    p. 66.

  113. 113.

    The measure of this resistance is carried out considering a column of water, in which the adhesion among the parties is motivated only by the effect of a macroscopic horror vacui; it is quantified in 18 braccia (about 10 m). In the case of copper Galileo estimated the resistance offered by the macroscopic vacuum with respect to the total one in the ratio of 2 : 5000 or so, then practically negligible [66], pp. 65–66.

  114. 114.

    pp. 153–154.

  115. 115.

    The concept of “remote actions” was not new; it could be derived by Philo of Byzantium according to [111], p. 125.

  116. 116.

    p. 9.

  117. 117.

    vol. 4, p. 112.

  118. 118.

    vol. 4, p. 89.

  119. 119.

    vol. 7, p. 443.

  120. 120.

    vol. 7, p. 443.

  121. 121.

    vol. 7, pp. 446–447. Translation in [74].

  122. 122.

    vol. 7, p. 445.

  123. 123.

    vol. 7, p. 450.

  124. 124.

    vol. 7, p. 456.

  125. 125.

    vol. 7, p. 451. Translation in [74].

  126. 126.

    vol. 7, p. 474. Translation in [74].

  127. 127.

    vol. 7, p. 454.

  128. 128.

    p. 152.

  129. 129.

    p. 161.

  130. 130.

    p. 154.

  131. 131.

    pp. 154–157.

  132. 132.

    p. 156.

  133. 133.

    pp. 157–158.

  134. 134.

    p. 160.

  135. 135.

    p. 165. Actually Cavalieri declared it differed insensibly from a parabola, because he knew that the lines of fall were not exactly parallel to each other, but converging toward the center of the earth.

  136. 136.

    pp. 168–169.

  137. 137.

    p. 4.

  138. 138.

    pp. 171–172.

  139. 139.

    p. 48.

  140. 140.

    pp. 49–50.

  141. 141.

    p. 178.

  142. 142.

    p. 97.

  143. 143.

    Chapter 7.

  144. 144.

    p. 98.

  145. 145.

    p. 140.

  146. 146.

    pp. 180–181.

  147. 147.

    p. 205.

  148. 148.

    p. 99.

  149. 149.

    vol. 8, pp. 214–218.

  150. 150.

    vol 3, pp. 461–462.

  151. 151.

    vol. 13, p. 348. Letter of Baliani to Benedetto Castelli. February 20th, 1627.

  152. 152.

    pp. 219–221.

  153. 153.

    vol. 3, p. 479.

  154. 154.

    p. 191.

  155. 155.

    vol. 3, p. 80.

  156. 156.

    pp. 192–193.

  157. 157.

    vol. 3, p. 276.

  158. 158.

    pp. 62–71.

  159. 159.

    Lezione 2, p. 6.

  160. 160.

    The argument, already considered by Galileo [66], p. 202, was taken up in a surprisingly similar way by Leibniz and Johann Bernoulli [19], p. 175.

  161. 161.

    Lezione 2, p. 7.

  162. 162.

    Lezione 3, pp. 13–14.

  163. 163.

    Lezione 2, pp. 9–10.

  164. 164.

    The summation of moments over time, though suggestive is in fact wrong according to modern mechanics [19], p. 176.

  165. 165.

    Lezione 2, p. 12. See Fig. 4.10.

  166. 166.

    Lezione 7, pp. 48–49.

  167. 167.

    Lezione 7, p. 49.

  168. 168.

    Lezione 6, p. 37.

  169. 169.

    p. 37.

  170. 170.

    p. 191.

  171. 171.

    Castelli is referring to the first proposition of the second part of his treatise.

  172. 172.

    p. 7.

  173. 173.

    p. 11.

  174. 174.

    p. 27.

  175. 175.

    p. 33.

  176. 176.

    pp. 46–47.

  177. 177.

    p. 47.

  178. 178.

    p. 52.

  179. 179.

    p. 53.

  180. 180.

    p. 48.

  181. 181.

    pp. 76–98.

  182. 182.

    pp. 99–184.

  183. 183.

    p. 78.

  184. 184.

    p. 79.

  185. 185.

    p. 82.

  186. 186.

    p. 83.

  187. 187.

    pp. 77–78.

  188. 188.

    p. 77.

  189. 189.

    pp. 194–199. The precise reference is to pages 197–198. Actually the speed distribution along the height of a fluid in a section of an open channel is not linear.

    The real profile has the pattern shown in Fig. 4.14 ([40], p. 334). The distribution is thus closer to the constant than to the linear. Perhaps Castelli realized this fact and declined to accept the suggestion of Cavalieri .

  190. 190.

    p. 88.

  191. 191.

    In channels with rectangular sections, according to modern theories of hydraulics, the flow rate is proportional to \(h^{5 / 3} \sim h^2\) [40], p. 316.

  192. 192.

    pp. 94–95.

  193. 193.

    vol. 19, pp. 599–632. See also [119].

  194. 194.

    Gal. MSS 155–258. The contents are listed in [58]. For a complete list of Viviani’s published works see [117].

  195. 195.

    The monograph was reprinted in Galileo works of 1842–1856 as vol. 14 [70].

  196. 196.

    vol. 3, pp. 193–305. The Florentine edition is the second Italian edition of the works of Galileo after that of Bologna and was edited by Grandi , Tommaso Bonaventuri, and Benedetto Bresciani. The writings of Viviani on the strength of materials that do not appear in the National Edition by Favaro , were given the title: Trattato delle resistenze principiato da Vincenzo Viviani per illustrare le opere di Galileo .

  197. 197.

    The definition continues with the text “perpendicular to the horizon”, which has been omitted because it is misleading for a modern reader.

  198. 198.

    This is the Galilean absolute resistance, that is, the resistance to pure traction.

  199. 199.

    vol. 14, pp. 3–6.

  200. 200.

    Today it is known that such a center does not exist for a bent beam.

  201. 201.

    vol. 14, p. 6.

  202. 202.

    vol. 14, pp. 7–10.

  203. 203.

    vol. 14, p. 9.

  204. 204.

    pp. 17–45.

References

  1. Archimedes (1565) Archimedis De iis quae vehuntur in aqua libri duo. Commandino F (ed). Benaci, Bologna

    Google Scholar 

  2. Archimedes (1880–1881) Archimedis Opera omnia cum commentari Eutocii (3 vols). Heiberg JL (ed). Teubneri BG, Leipzig

    Google Scholar 

  3. Archimedes (2010) On the equilibrium of planes. In: Heath TL (ed) (2010) The works of Archimedes. Cambridge University Press, Cambridge, pp. 189–220

    Google Scholar 

  4. Archimedes (2010) On spirals. In: Heath TL (ed) (2010) The works of Archimedes. Cambridge University Press, Cambridge, pp. 151–188

    Google Scholar 

  5. Ariotti BP (1975) Bonaventura Cavalieri, Marin Mersenne and the reflecting telecope. Isis 66(3):302–321

    Article  Google Scholar 

  6. Bayer G (1995) Definiton through demonstration: the two types of syllogisms in “Posterior analytics”. Phronesis 40(3):241–264

    Article  Google Scholar 

  7. Baldini U (1976) La struttura della materia nel pensiero di Galileo. De Homine 57:91–164

    Google Scholar 

  8. Beretta M (2000) At the source of western science: The organization of experimentalism at the Accademia del cimento (1637–1667): Notes and Records of The Royal Society of London 54(2):131–151

    Article  MathSciNet  Google Scholar 

  9. Bertoloni Meli D (1998) Shadows and deception: From Borelli’s “Theoricae” to the “Saggi” of the Cimento. The British Journal for the History of Science 31(4):383–402

    Article  MathSciNet  MATH  Google Scholar 

  10. Bertoloni Meli D (2001) Authorship and teamwork around the Cimento academy: Anatomy, mathematics, experimental philosophy. Early Science and Medicine 6(2):65–95

    Article  MathSciNet  Google Scholar 

  11. Biancani G (1996) De mathematicarum natura dissertatio. English Translation by Klima G. In: Mancosu P (1996) Philosophy of mathematics and mathematical practice in the seventeenth century. Oxford University Press, Oxford, pp. 178–212

    Google Scholar 

  12. Boas M (1952) The establishment of the mechanical philosophy. Osiris X: 433–435

    Google Scholar 

  13. Boschiero L (2002) Natural philosophising inside the late seventeenth-century Tuscan court. The British Journal for the History of Science 35(4):383–410

    Article  Google Scholar 

  14. Boschiero L (2005) Post-Galilean thought and experiment in seventeenth-century Italy: the life and work of Vincenzo Viviani. History of Science 43:77–100

    Article  MathSciNet  Google Scholar 

  15. Bryan WR (2011) How Galileo dropped the ball and Fermat picked it up. Synthese 180(3):337–356

    Article  MATH  Google Scholar 

  16. Capecchi D (2003) Storia della scienza delle costruzioni. Progedit, Bari

    Google Scholar 

  17. Capecchi D (2008) La resistenza dei materiali tra Cinquecento e Seicento. Physis 45:57–92

    MathSciNet  Google Scholar 

  18. Capecchi D (2012) Historical roots of the rule of composition of forces. Meccanica, 47 (8):1887–1901

    Article  MathSciNet  MATH  Google Scholar 

  19. Capecchi D (2014) The problem of motion of bodies. Springer, Cham

    Book  MATH  Google Scholar 

  20. Capecchi D, Pisano R (2007) La teoria dei baricentri da Aristotele a Torricelli come fondamento della statica. Physis 44:1–29

    Google Scholar 

  21. Capecchi D, Pisano R (2010) Reflections on Torricelli’s principle in the mechanical science. Epistemology of the center of gravity. Organon 42:83–100

    Google Scholar 

  22. Castelli B (1628) Della misura delle acque correnti. Stamperia Camerale, Rome

    Google Scholar 

  23. Castelli B (1660) Della misura delle acque correnti. Dozza, Bologna

    Google Scholar 

  24. Cavalieri B (1632) Lo specchio ustorio. Ferroni, Bologna

    Google Scholar 

  25. Cavalieri B (1635) Geometria indivisibilibus continuorum nova quadam ratione promota. Ferroni, Bologna

    Google Scholar 

  26. Cavalieri B (1639) Nuova pratica astro(m)logica. Ferroni, Bologna

    Google Scholar 

  27. Cavalieri B (1647) Exercitationes geometricae sex. Monti, Bologna

    Google Scholar 

  28. Cavalieri B (1985) Opere inedite di Bonaventura Cavalieri. Edited by Giusti E, Ulivi E. Bollettino di Storia delle Scienze Matematiche 32(1–2):3–352

    Google Scholar 

  29. Cavalieri B (1987) Carteggio. Edited by Baroncelli G. Olschki, Florence

    Google Scholar 

  30. Cazré P (1645) Physica demonstratio, qua ratio, mensura, modus ac potentia accelerationis motus in naturali descensu gravium determinatur. Du Brueil, Paris

    Google Scholar 

  31. Choen RS (1974) The method of analysis. Reidel, Dordrecht

    Google Scholar 

  32. Choen RS (1984) Quantifying music. Reidel, Dordrecht

    Google Scholar 

  33. Clavelin M (1968) La philosophie naturelle de Galilée: essai sur les origines et la formation de la mécanique classique. Coli, Paris

    MATH  Google Scholar 

  34. Corbini A (2006) La teoria della scienza nel XIII secolo. I commenti agli analitici secondi. Edizioni del Galluzzo, Florence

    Google Scholar 

  35. Dal Monte G (1615) Le mechaniche dell’illustriss. sig. Guido Ubaldo de’ marchesi del Monte. Tradotte in volgare da Filippo Pigafetta (1581). Deuchino E, Venice

    Google Scholar 

  36. Damerow P, Freudenthal G, Mclaughlin P, Renn J (1991), Exploring the limits of preclassical mechanics. Springer, New York

    MATH  Google Scholar 

  37. Dear P (1995) Discipline & experience. The University of Chicago Press, Chicago

    Book  MATH  Google Scholar 

  38. De Pace A (1993) Le matematiche e il mondo. Francoangeli, Milan

    MATH  Google Scholar 

  39. De Pace A (2009) Niccol Copernico e la fondazione del cosmo eliocentrico. Mondadori, Milan

    Google Scholar 

  40. Di Ricco G (1959) Idraulica. Edizioni dell’Ateneo, Rome, vol. 1

    Google Scholar 

  41. Gillispie CC (ed) (1971–1980) Dictionary of scientific biography. Scribner, New York

    Google Scholar 

  42. Drake S (1957) Discoveries and opinions of Galileo. Doubleday & Co., New York

    Google Scholar 

  43. Drake S (1967) Galileo’s 1604 fragments of falling bodies (Galileo gleanings XVIII). The British Journal of the History of Sciences 4(4):340–358

    Article  MATH  Google Scholar 

  44. Drake S (1970) Renaissance music and experimental science. Journal of the History of Ideas 31(4):483–500

    Article  Google Scholar 

  45. Drake S (1973) Galileo’s experimental confirmation of horizontal inertia: Unpublished manuscripts (Galileo gleanings XII). Isis 64(3):290–305

    Google Scholar 

  46. Drake S (1973) Velocity and Eudoxian proportion theory. Physis 15:49–54

    MATH  Google Scholar 

  47. Drake S (1975) Impetus theory reappraised. Journal of History of Ideas 36(1):27–46

    Article  Google Scholar 

  48. Drake S (ed) (1976) Galileo against the philosophers in his Dialogue of Cecco di Ronchitti (1605) and considerations of Alimberto Mauri (1606). Zeitlin & Ver Brugge, Los Angeles

    Google Scholar 

  49. Drake S (1978) Galileo at work. His scientific biography. University of Chicago Press, Chicago

    Google Scholar 

  50. Drake S (1978) Ptolemy, Galileo, and scientific method. Studies in History and Philosophy of Science 9(2):99–115

    Article  MathSciNet  MATH  Google Scholar 

  51. Drake S (1981) Cause, experiment and science. The University Press of Chicago, Chicago

    Google Scholar 

  52. Drake S (1992) Musics and philosophy in early modern science. In: Coeloho V (ed) (1992) Music and science in the age of Galileo. Springer, Dordrecht, pp. 3–16

    Chapter  Google Scholar 

  53. Drake S (2000) Two new sciences. A history of free fall, Aristotle to Galileo. Wall & Emerson, Toronto

    Google Scholar 

  54. Drake S, Drabkin IE (1969) Mechanics in sixteenth-century Italy. University of Wisconsin Press, Madison

    Google Scholar 

  55. Drake S, MacLachlan J (1975) Galileo’s discovery of the parabolic trajectory. Scientific American 232(3):102–110

    Article  Google Scholar 

  56. Ducheyne S (2006) Galileo’s interventionist notion of “cause”. Journal of the History of Ideas 67 (3):443–464

    Article  MathSciNet  Google Scholar 

  57. Favaro A (1900) Due lettere inedite di Guidobaldo del Monte a Giacomo Contarini. Ferrari, Venice

    MATH  Google Scholar 

  58. Favaro A (1912–1913) Vincenzo Viviani. Proceedings of the Royal Institute of Sciences, Letters and Arts 72 (2):1–155

    Google Scholar 

  59. Fermat P (1891–1912) Oeuvres de Fermat (4 vols). Gauthier-Villars, Paris

    Google Scholar 

  60. Fredette R (2001) Galileo’s De motu antiquiora: Notes for a reappraisal. Max Planck Institute for the History of Science, Preprint 164, Berlin

    Google Scholar 

  61. Galilei G (1590) De motu antiquiora. In: Favaro A (ed) (1890–1909) Le opere di Galileo Galilei (National edition) (20 vols). Barbera, Florence, vol 1, pp. 243–419.

    Google Scholar 

  62. Galilei G (1590) De motu antiquiora. Translated into English by Fredette R (2000) http://archimedes.mpiwg-berlin.mpg.de/cgi-bin/toc/toc.cgi

  63. Galilei G (1612) Discorsi intorno alle cose che stanno in su l’acqua o che in quella si muovono. In: Favaro A (ed) (1890–1909) Le opere di Galileo Galilei (National edition) (20 vols). Barbera, Florence, vol 4, pp. 57–141

    Google Scholar 

  64. Galilei G (1632) Dialogo sopra i due massimi sistemi del mondo. In: Favaro A (ed) (1890–1909) Le opere di Galileo Galilei (National edition) (20 vols). Barbera, Florence, vol 7, pp. 21–520

    Google Scholar 

  65. Galilei G (1634) Les méchaniques de Galilée, mathématicien et ingénieur du Duc de Florence. Edited by Mersenne M. Paris, Guenon

    Google Scholar 

  66. Galilei G (1638) Discorsi e dimostrazioni matematiche sopra due nuove scienze (1638). In: Favaro A (ed) (1890–1909) Le opere di Galileo Galilei (National edition) (20 vols). Barbera, Florence, vol. 8, pp. 39–362

    Google Scholar 

  67. Galilei G (1649) Le mecaniche. In: Favaro A (ed) (1890–1909) Le opere di Galileo Galilei (National edition) (20 vols). Barbera, Florence, vol 2, pp. 147–190

    Google Scholar 

  68. Galilei G (1656) Opere di Galileo Galilei linceo. Eredi del Dozza, Bologna

    Google Scholar 

  69. Galilei G (1718) Opere di Galileo Galilei nobile fiorentino accademico Linceo. Nuova edizione coll’aggiunta di vari trattati dell’istesso Autore non più dati alle stampe (3 vols). Preface of Bonaventuri T. Tartini & Franchi, Firenze

    Google Scholar 

  70. Galilei G (1842–1856) Le opere di Galileo Galilei (15 vols). Edited by Alberi E. Società Editrice Fiorentina, Florence

    Google Scholar 

  71. Galilei G (1960) On motion. In: Drabkin IE, Drake S (eds) (1960) Galileo Galilei: On motion and on mechanics. The University of Wisconsin Press, Madison, pp. 3–131

    Google Scholar 

  72. Galilei G (1967) Galileo Galilei: Dialogue concerning the two chief world systems-Ptolemaic and copernican. Translated into English by Drake S. University of California Press, Berkley

    Google Scholar 

  73. Galilei G (1974) Two new sciences. Translated into English by Drake S. The University of Wisconsin Press, Madison

    MATH  Google Scholar 

  74. Galileo G (1661) The systeme of the world: in four dialogues. Edited and translated into English by Salusbury T. Leibourne, London

    Google Scholar 

  75. Galileo G (1665) Mathematical discourses and demonstrations, touching two new sciences. Edited and translated into English by Salusbury T. Leibourne, London

    Google Scholar 

  76. Galileo Galilei (1890–1909) Le opere di Galileo Galilei (National edition) (20 vols). Edited by Favaro A. Barbera, Florence

    Google Scholar 

  77. Galileo G. Ms Gal. 27. Biblioteca Nazionale Centrale di Firenze, Florence

    Google Scholar 

  78. Galileo G. Ms Gal. 72. Biblioteca Nazionale Centrale di Firenze, Florence

    Google Scholar 

  79. Galileo G. Ms Gal. 74. Biblioteca Nazionale Centrale di Firenze, Florence

    Google Scholar 

  80. Gendler TS (1998) Galileo and the indispensability of scientific thought experiment. The British Journal for the Philosophy of Science 49(3):397–424

    Article  Google Scholar 

  81. Gilbert W (1600) De magnete, magneticisque corporibus, et de magno magnete tellure: physiologia nova, plurimis & argumentis, & experimentis demonstrata. Short, London

    Google Scholar 

  82. Grandi G (1718?) Trattato delle resistenze principiato da Vincenzo Viviani per illustrare l’opere del Galileo ed ora compiuto, e riordinato colla giunta di quelle dimostrazioni, che vi mancavano. Tartini & Franchi, Florence

    Google Scholar 

  83. Grant E (1973), Medieval explanations and interpretations of the dictum that “Nature abbors a vacuum”. Traditio 29:327–355

    Article  Google Scholar 

  84. Hill DK (1979) A note on a Galilean worksheet. Isis 70:269–271

    Article  MathSciNet  Google Scholar 

  85. Hill DK (1986) Galileo’s work on 116v: A new analysis. Isis 77:283–291

    Article  MathSciNet  MATH  Google Scholar 

  86. Hill DK (1988) Dissecting trajectories: Galileo’s early experiments on projectiles motion and the law of fall. Isis 79(4):646–668

    Article  MathSciNet  MATH  Google Scholar 

  87. Hujer K (1967) Francesco Bonaventura Cavalieri in Galileo’s school of thought. Saggi su Galileo Galilei. Barbera, Florence

    Google Scholar 

  88. Koyré A (1939) Etudes galiléennes. Hermann, Paris

    Google Scholar 

  89. Koyré A (1943) Galileo and Plato. Journal of the History of Ideas 4(4):400–428

    Article  Google Scholar 

  90. Koyré A (1953) An experiment in measurement. Proceedings of the American Philosophical Society 97(2):222–237

    Google Scholar 

  91. Koyré A (1968) Metaphysics and measurement. Chapman & Hall, London

    Google Scholar 

  92. Kuhn T (1977) The essential tension. The University Press of Chicago, Chicago

    Google Scholar 

  93. Knowles Middleton WE (1963) The place of Torricelli in the history of barometer. Isis 54(1):11–28

    Article  MATH  Google Scholar 

  94. Mach E (1919) The science of mechanics. Translated into English by McCormack TJ. Open Court, London

    MATH  Google Scholar 

  95. Maffioli CS (1994) Out of Galileo. Erasmus Publishing, Rotterdam

    Google Scholar 

  96. Maffioli CS (2011) “La ragione del vacuo” Why and how Galileo measured the reistance of vacuum. Galileiana 8:73–104

    Google Scholar 

  97. MacLachlan J (1973) A test of an ‘imaginary’ experiment of Galileo’s. Isis 64:374–79

    Article  Google Scholar 

  98. MacLachlan J (1990) Drake against the philosophers. In: Levere TH, Shea WR (eds) (1990) Nature, experiment and the sciences. Kluwer, Dordrecth, pp. 123–144

    Chapter  Google Scholar 

  99. Machamer P (1978) Galileo and the causes. In: Butts RE, Pitt JC (eds) (1978) New perspectives on Galileo. Reidel, Dordrecht, pp. 161–180

    Chapter  Google Scholar 

  100. Marchetti A (1669) De resistentia solidorum. Vangelisti & Martini, Florence.

    Google Scholar 

  101. McMullin E (1978) The concept of science in Galileo’s work. In: Butts RE, Pitt JC (eds) (1978) New perspectives on Galileo. Reidel, Dordrecht, pp. 209–258

    Chapter  Google Scholar 

  102. Mertz DW (1982) The concept of structure in Galileo: Its role in the methods of proportionality and ex-suppositione as applied to the tides. Studies in History and Philosophy of Science 13(2):111–131

    Article  MathSciNet  MATH  Google Scholar 

  103. Naylor RH (1974) Galileo’s theory of projectile motion. Isis 71(4):550–570

    MathSciNet  Google Scholar 

  104. Naylor RH (1974) Galileo and the problem of free fall. British Journal for the History of Science 7:105–134

    Article  MathSciNet  MATH  Google Scholar 

  105. Naylor RH (1975) An aspect of Galileo’s study of the parabolic trajectory. Isis 66:394–396

    Article  MATH  Google Scholar 

  106. Naylor RH (1976) Galileo: The search for the parabolic trajectory. Annals of Science 33:153–174

    Article  MathSciNet  MATH  Google Scholar 

  107. Naylor RH (1976) Galileo: Real experiment and didactic demonstration. Isis 67:398–419

    Article  MathSciNet  MATH  Google Scholar 

  108. Naylor RH (1977) Galileo’s theory of motion: Processes of conceptual change in the period 1604–1610. Annals of Science 34:365–392

    Article  MathSciNet  MATH  Google Scholar 

  109. Naylor RH (1980) The role of experiment in Galileo’s early work on the law of fall. Ann. Sci. 37:363–387

    Article  MathSciNet  Google Scholar 

  110. Nonnoi G (1997) Evangelista Torricelli, la pressione dell’aria e gli autori dei crepuscoli. Torricelliana. Bollettino della Società Torricelliana di Scienze e Lettere, pp. 17–45.

    Google Scholar 

  111. Nonnoi G (2000) Galileo: quale atomismo? In: Gatto R, Festa E (2000) Atomismo e continuo nel XVII secolo. Vivarium, Napoli

    Google Scholar 

  112. Oresme N (1968) Le livre du ciel et du monde. Translated into English by Menut AD. University of Wisconsin Press, Madison

    MATH  Google Scholar 

  113. Palmerino CR (2000) Una nuova scienza della materia per la Scienza nova del moto. La discussione dei paradossi dell’infinito nella prima giornata dei Discorsi Galileiani In: Gatto R, Festa E (2000) Atomismo e continuo nel XVII secolo. Vivarium, Naples, pp. 275–320

    Google Scholar 

  114. Randall JH (1940) The development of scientific method in the school of Padua. Journal of the History of Ideas 1(2):177–206

    Article  Google Scholar 

  115. Redondi P (1988) Galileo eretico. Einaudi, Turin

    Google Scholar 

  116. Renn I, Damerow P (2003) The hanging chain: a forgotten “discovery” buried in Galileo’s notes on motion. In: Holmes FL, Renn I, Rheinberg (eds) (2003) Reworking the bench. Kluwer, New York

    Google Scholar 

  117. Riccardi P (ed) (1870) Biblioteca matematica italiana, vol. I, pp. 625–630

    Google Scholar 

  118. Schmitt CB (1969) Experience and experiment: A comparison of Zabarella’s view with Galileo’s in De motu. Studies in the Renaissance 16:80–138

    Article  Google Scholar 

  119. Segre M (1989) Viviani’s life of Galileo. Isis 80(2):206–231

    Article  MathSciNet  Google Scholar 

  120. Settle T (1961) An experiment in the history of science. Science 133:19–23

    Article  Google Scholar 

  121. Shank JB (2013) What exactly was Torricelli’s ‘barometer’? In: Gal O, Chen-Morris R (eds) (2013) Science in the age of Baroque. Springer, Dordrecht, pp. 161–196

    Google Scholar 

  122. Sorensen RA (1992) Thought experiments. Oxford University Press, Oxford

    Google Scholar 

  123. Stevin S (1586) De Beghinselen Des Waterwichts. Raphelinghen, Leiden

    Google Scholar 

  124. Stevin S (1634) Les oeuvres mathematiques de Simon Stevin, edited by Girard A. Elsevier, Leiden

    Google Scholar 

  125. Torricelli E (1644) Opera geometrica. Masse & de Landis, Florence

    Google Scholar 

  126. Torricelli E (1644) De motu gravium. In: TorricellI E (1644) Opera geometrica. Masse & de Landis, Florence, pp. 95–153

    Google Scholar 

  127. Torricelli (1715) Lezioni accademiche d’Evangelista Torricelli. Stamperia SAR, Guiducci & Franchi, Florence

    Google Scholar 

  128. Torricelli E (1919–1944) Opere di Evangelista Torricelli (4 vols). Edited by Loria G, Vassura G. Montanari, Faenza

    Google Scholar 

  129. Torricelli E (1975) Opere scelte di Evangelista Torricelli. Edited by Bellone L. UTET, Torino

    Google Scholar 

  130. Viviani V (1654) Racconto istorico della vita del sig. Galileo Galilei. In: Favaro A (ed) (1890–1909) Le opere di Galileo Galilei (National edition) (20 vols). Barbera, Florence, vol. 19, pp. 599–632

    Google Scholar 

  131. Wallace WA (1968) The enigma of Domingo de Soto: Uniformiter difformis and falling bodies. Isis 59(4):384–401

    Article  MATH  Google Scholar 

  132. Wallace WA (1974) Galileo and reasoning ex-suppositione. The methodology of the two new sciences. Proceedings of the Biennial Meeting of the Philosophy of Science Association, pp. 79–104. Princeton University Press, Princeton

    Google Scholar 

  133. Wallace WA (1984) Galileo and his sources. Princeton University Press, Princeton

    Book  Google Scholar 

  134. Wallace WA (1992) Galileo’s logic of discovery and proof. Kluwer, Dordrecht

    Book  Google Scholar 

  135. Wallace WA (1992) Galileo’s logical treatises. Kluwer, Dordrecht

    Book  Google Scholar 

  136. Walker DP (1978) Studies in musical sciences in the late Renaissance. University of London. Brill, Leiden

    Google Scholar 

  137. Wisan WL (1974) The new science of motion: A study of Galileo’s De motu locali. Archive for History of Exact Sciences 13:103–306

    Article  MathSciNet  MATH  Google Scholar 

  138. Wisan WL (1978) Galileo’s scientific method. In: Butts RE, Pitt JC (1978) New perspectives on Galileo. Reidel, Dordrecht, pp. 1–58

    Google Scholar 

  139. Wisan WL (1984) Galileo and the process of scientific creation. Isis 75:269–286

    Article  MathSciNet  MATH  Google Scholar 

  140. Wisan WL (1984) On argument ex-suppositione falsa. Studies in History and Philosophy of Science 15(2):227–236

    Article  Google Scholar 

  141. Woodward J (2003) Making things happen. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Capecchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Capecchi, D. (2018). Galilean Epistemology. In: The Path to Post-Galilean Epistemology. History of Mechanism and Machine Science, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-319-58310-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58310-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58309-9

  • Online ISBN: 978-3-319-58310-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics