Risk Assessment to Extreme Wave Events: The Barranquilla – Cienaga, Caribbean of Colombia Case Study

  • Nelson Guillermo Rangel-BuitragoEmail author
  • Giorgio Anfuso
  • Allan Williams
  • Jarbas Bonetti
  • Gracia C. Adriana
  • Juan Carlos Ortiz
Part of the Coastal Research Library book series (COASTALRL, volume 24)


The study of the relationships existing between littoral transformation and climate change impacts- with associated hazards, vulnerabilities and risks – represents the first step in the design of adaptation plans for coastal zones (risk reduction). Risk assessments provide information on the pressure to which the coastal zone is exposed and its adaptive capacity. In these assessments, it is important to examine interacting physical attributes and socio-economic, conservational and archeological/cultural characteristics. Determination of coastal susceptibility or vulnerability is an important instrument for managers/planners for coastal preservation, protection and development, as vulnerability outcomes provide baseline information and a scientific basis for any envisaged coastal erosion management plan together with mitigation measures under sustainability aspects. This chapter deals with a methodological approach to risk determination of extreme wave impacts. The approach is based on selection and evaluation of three types of variables: i) the forcing variables contributing to extreme wave-induced erosion, ii) dynamic variables that determine the resilience to erosion (susceptibility) and (iii) the vulnerable targets grouped in three different contexts (socio-economic, ecological and heritage). These are combined into two separate indices, the Hazard Index (combining forcing and susceptibility) and the Vulnerability Index, which together constitute the Coastline Risk to Extreme Waves as a single numerical measure of the risk for a given area. Maps generated with this methodology can be used as a guideline contributing to the determination of causes, processes and consequences derived from the extreme waves and associated processes.


Extreme events Shoreline change Hazard Vulnerability Risk 



This work is a contribution to research groups: “Geology, Geophysics and Marine – Coastal Process”, Universidad del Atlántico (Barranquilla, Colombia), “Coastal and Marine Research Group”, University of Wales Trinity Saint David (Swansea, Wales, UK), “RNM-328”, Universidad de Cadiz (Andalusia, Spain) and “Coastal Oceanography Laboratory”, Federal University of Santa Catarina (Florianopolis, Brazil).


  1. Adger WN, Hughes TP, Folke C, Carpenter SR, Rockström J (2005) Social ecological resilience to coastal disasters. Science 309:1036–1039CrossRefGoogle Scholar
  2. Almeida LP, Ferreira O, Vousdouskas MI, Dodet G (2011) Historical variation and trends in storminess along the Portuguese South coast. Nat Hazards Earth Syst Sci 11:2407–2417CrossRefGoogle Scholar
  3. Andrade C (2008) Cambios recientes del nivel del mar en Colombia. In: Restrepo JD (ed) Deltas de Colombia: morfodinámica y vulnerabilidad ante el cambio global. EAFIT University Press, Medellin, pp 103–122Google Scholar
  4. Anfuso G, Martinez JA (2009) Assessment of coastal vulnerability through the use of GIS tools in South Sicily (Italy). Environ Manag 43:533–545CrossRefGoogle Scholar
  5. Anfuso G, Nachite D (2011) Climate change and the Mediterranean southern coasts. In: Jones A, Phillips MC (eds) Disappearing destinations: climate change and future challenges for coastal tourism. CAB International, Wallingford, pp 99–110CrossRefGoogle Scholar
  6. Anfuso G, Gracia FJ, Battocletti G (2013) Determination of cliffed coastline sensitivity and associated risk for human structures: a methodological approach. J Coast Res 29(6):1292–1296Google Scholar
  7. Anfuso G, Rangel-Buitrago N, Correa I (2015) Evolution of four different Sandy features along the Caribbean littoral of Colombia. In: Randazzo G, Jackson D, Cooper A (eds) Sand and gravel spits, coastal research library n° 12. Springer, New York, pp 1–21Google Scholar
  8. Aybulatov NA, Artyukhin YV (1993) Geo-ecology of the world ocean’s shelf and coasts. Hydrometeo Publishing, LeningradGoogle Scholar
  9. Bacon S, Carter DJT (1991) Wave climate changes in the North Atlantic and the North Sea. Int J Climatol 11:545–558CrossRefGoogle Scholar
  10. Barragan JM, Andreis M (2015) Analysis and trends of the world's coastal cities and agglomerations. Ocean Coast Manage 114:11–20CrossRefGoogle Scholar
  11. Benassai G, Chirico F, Corsini S (2009) Una metodologia per la definizione del rischio da inondazione costiera. Stud Costieri 16:51–72Google Scholar
  12. Bird E (1985) Coastline changes: a global review. John Wiley, ChichesterGoogle Scholar
  13. Birkmann J (2007) Risk and vulnerability indicators at different scales: applicability, usefulness and policy implications. Environ Hazard 7:20–31CrossRefGoogle Scholar
  14. Boak E, Turner I (2005) Shoreline definition and detection: a review. J Coast Res 21(4):688–703CrossRefGoogle Scholar
  15. Bonetti J, Woodroffe CD (2016) Spatial analysis on GIS for coastal vulnerability assessment. In: Bartlett D, Celliers L (eds) Geoinformatics for marine and coastal management. Taylor & Francis, Chichester, pp 369–397Google Scholar
  16. Bonetti J, Klein AHF, Muler M, De Luca CB, Silva GV, Toldo JREE, González M (2013) Spatial and numerical methodologies on coastal erosion and flooding risk assessment. In: Finkl C (ed) Coastal Hazards, Coastal Research Library Series. Springer, Dordrecht, pp 423–442CrossRefGoogle Scholar
  17. Botero C, Anfuso G, Rangel-Buitrago N, Correa I (2013) Coastal erosion monitoring in Colombia: overview and study cases on Caribbean and Pacific coasts. In: Cipriani L (ed) Coastal erosion monitoring: a network of regional observatories. Nouva Grafica Fiorentina, Florence, pp 199–214Google Scholar
  18. Botero C, Sosa Z (2011) Propuestas para la gestión litoral de un país con tres costas: Colombia. In: Barragán JM (ed) Manejo costero integrado y política pública en Iberoamérica: propuestas para la acción. Red Iberoamericana en Manejo Costero Integrado (CYTED), Cádiz, pp 139–157Google Scholar
  19. Brown AC, McLachlan A (2002) Sandy shore ecosystems and the threats facing them: some predictions for the year 2025. Environ Conserv 29:62–77CrossRefGoogle Scholar
  20. Bruun P (1962) Sea level rise as a cause of shore erosion. J Waterw Harb Div 88:117–130Google Scholar
  21. Burzel A, Dassanayake D, Naulin M, Kortenhaus A, Oumeraci H, Wahl T, Mudersbach C, Jensen J, Gönnert G, Sossidi K, Ujeyl G, Pasche E (2010) Integrated flood risk analysis for extreme storm surges (XTREMRISK). COPRI, ShangaiGoogle Scholar
  22. Carrasco AR, Ferreira Ó, Matias A, Pacheco A, Freire P (2012) Short-term sediment transport at a backbarrier beach. J Coast Res 27(6):1076–1084Google Scholar
  23. Carter TR, Parry ML, Nishioka S, Harasawa H (1994) Technical guidelines for assessing climate change impacts and adaptation. University College and Centre for Global Environmental Research, TskubaGoogle Scholar
  24. Ceia F, Patricio J, Marquez J, Alveirinho Dias J (2010) Coastal vulnerability in barrier islands: the high risk areas of the Ria Formosa (Portugal) system. Ocean Coast Manage 53:478–486CrossRefGoogle Scholar
  25. Clark GE, Moser SC, Ratick SJ, Dow K, Meyer WB, Emani S, Jin W, Kasperson JX, Kasperson RE, Schwarz HE (1998) Assessing the vulnerability of coastal communites to extreme storms: the case of Revere, MA., USA. Mitig Adapt Strat Glob Chang 3(1):59–82CrossRefGoogle Scholar
  26. Coelho CR, Silva F, Veloso-Gomes F, Taveira-Pinto F (2009) A vulnerability analysis approach for the Portuguese west coast. In: Popov V, Brebbia CA (eds) Risk analysis V: simulation and hazard mitigation. Institute of Technology, Wessex, pp 234–295Google Scholar
  27. Cooper JAG, Pilkey O (2012) Pitfalls of shoreline stabilization. Springer, BerlinCrossRefGoogle Scholar
  28. Cooper JAG, McLaughlin S (1998) Contemporary multidisciplinary approaches to coastal classification and environmental risk analysis. J Coast Res 14:512–524Google Scholar
  29. Crowell M, Buckley MK (1993) Calculating erosion rates: using long-term data toincrease data confidence. In: Coastal Zone '93. ASCE, New YorkGoogle Scholar
  30. Crowell M, Scott E, Kevin C, McAfee S (2007) How many people live in coastal areas? J Coast Res 23(5):3–5Google Scholar
  31. Del Rio L, Gracia F (2009) Erosion risk assessment of active coastal cliffs in temperate environments. Geomorphology 112:82–95CrossRefGoogle Scholar
  32. Di Paola G, Iglesias J, Rodriguez G, Benassai G, Aucelli P, Pappone G (2011) Estimating coastal vulnerability in a meso-tidal beach by means of quantitative and semi-quantitative methodologies. J Coast Res SI 61:303–308CrossRefGoogle Scholar
  33. Dolan R, Davis RE (1992) An intensity scale for Atlantic coast northeast storms. J Coast Res 8:352–364Google Scholar
  34. Doody JP (2004) Coastal squeeze – an historical perspective. J Coast Conserv 10(1–2):129–138CrossRefGoogle Scholar
  35. Dorsch W, Newland T, Tassone D, Tymons S, Walker D (2008) A statistical approach to modeling the temporal patterns of ocean storms. J Coast Res 24(6):1430–1438CrossRefGoogle Scholar
  36. Esteves LC, Williams JJ, Brown JM (2011) Looking for evidence of climate change impacts in the eastern Irish Sea. Nat Hazards Earth Syst Sci 11:1641–1656CrossRefGoogle Scholar
  37. Esteves LC (2014) Managed re-alignment: a viable long term management strategy. Springer, AmsterdamGoogle Scholar
  38. García Mora MR, Gallego JB, Williams AT, García Novo F (2001) A coastal dune vulnerability classification. A case study of the SW Iberian Peninsula. J Coast Res 17(4):802–811Google Scholar
  39. Gornitz V (1991) Global coastal hazards from future sea level rise. Palaeogeogr Palaeoclimatol Palaeoecol 89:379–398CrossRefGoogle Scholar
  40. Gornitz VM, Beaty TW, Daniels RC (1997) A coastal hazards data base for the U.S. West coast. Oak Ridge National Laboratory, Oak RidgeCrossRefGoogle Scholar
  41. Gornitz VM, Daniels RC, White TW, Birdwell KR (1994) The development of a coastal risk assessment database: vulnerability to sea-level rise in the U.S. southeast. J Coast Res 12:327–338Google Scholar
  42. Gracia FJ, Sanjaume E, Hernández L, Hernández AI, Flor G, Gómez-Serrano MA (2009) Dunas marítimas y continentales, Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Ministerio de Medio Ambiente y Medio Rural y Marino, MadridGoogle Scholar
  43. Guzman W, Posada B, Guzman G, Morales D (2008) Programa nacional de investigación para la prevención, mitigación y control de la erosión costera en Colombia –PNIEC: Plan de Acción 2009–2019. INVEMAR, Santa MartaGoogle Scholar
  44. Hall JW, Dawson RJ, Sayers PB, Rosu C, Chatterton JB, Deakin R (2003) A methodology for national-scale flood risk assessment. Thomas Telford, LondonGoogle Scholar
  45. Hammer-Klose ES, Thieler ER (2001) Coastal vulnerability to sea-level rise, a preliminary database for the U.S. Atlantic, Pacific, and Gulf of Mexico coasts. U.S. Geological Survey, CharlestonGoogle Scholar
  46. Hanson H, Larson M (2008) Implications of extreme waves and water levels in the southern Baltic Sea. J Hydraul Res 46(2):292–302CrossRefGoogle Scholar
  47. IPCC (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, GenevaGoogle Scholar
  48. IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on Climate Change. IPCC, GenevaGoogle Scholar
  49. Jenks GF, Caspal FC (1971) Error on choropletic maps: definition, measurement, reduction. Ann Assoc Am Geogr 61(2):217–244CrossRefGoogle Scholar
  50. Jones A, Phillips M (2011) Disappearing destinations. CABI, LondonGoogle Scholar
  51. Keim BD, Muller RA, Stone GW (2004) Spatial and temporal variability of coastal storms in the North Atlantic Basin. Mar Geol 210:7–15CrossRefGoogle Scholar
  52. Kelly J (2000) Mapping coastal hazards along a rocky coast with eroding bluffs and beaches. Proceedings of the 3rd symposium on the Iberian Atlantic Margin FaroGoogle Scholar
  53. Kirshen P, Watson C, Douglas E, Gontz A, Lee J, Tian Y (2007) Coastal flooding in the northeastern United States due to climate change. Mitig Adapt Strateg Glob Chang 13:437–451CrossRefGoogle Scholar
  54. Komar PD, Allan JC (2008) Increasing hurricane-generated wave heights along the U.S. East Coast and their climate controls. J Coast Res 24(2):479–488CrossRefGoogle Scholar
  55. Li K, Li GS (2011) Vulnerability assessment of storm surges in the coastal area of Guangdong Province. Nat Hazards Earth Syst Sci 11:2003–2011CrossRefGoogle Scholar
  56. LOICZ (1995) Coastal zone resources assessment guidelines. LOICZ, ManilaGoogle Scholar
  57. Maio CV, Gontz AM, Tenenbaum DE, Berkland EP (2012) Coastal hazard vulnerability assessment of sensitive historical sites on Rainsford Island, Boston Harbor, Massachusetts. J Coast Res 28:20–33CrossRefGoogle Scholar
  58. McLaughlin S, Cooper JAG (2010) A multi-scale coastal vulnerability index: a tool for coastal managers? Environ Hazard 9(3):233–248CrossRefGoogle Scholar
  59. McLaughlin S, McKenna J, Cooper JAG (2002) Socio-economic data in coastal vulnerability indices: constraints and opportunities. J Coast Res 36:487–497Google Scholar
  60. Moore L (2000) Shoreline mapping techniques. J Coast Res 16(1):111–124Google Scholar
  61. Moritz H, Moritz H (2006) Evaluating extreme storm power and potential implications to coastal infrastructure damage. 9th international workshop on wave hindcasting and forecasting. VictoriaGoogle Scholar
  62. Morris RKA (2012) Management realignement: A sediment management perspective. Ocean Coast Manag 65:59–66CrossRefGoogle Scholar
  63. Muler M, Bonetti J (2014) An integrated approach to assess wave exposure in coastal areas for vulnerability analysis. Mar Geod 37(2):220–237CrossRefGoogle Scholar
  64. Nguyen TTX, Bonetti J, Rogers K, Woodroffe CD (2016) Indicator-based assessment of climate-change impacts on coasts: a review of concepts, approaches and vulnerability indices. Ocean Coast Manag 123:18–43CrossRefGoogle Scholar
  65. Nicholls RJ, De la Vega-Leinert A (2000) Synthesis of sea-level rise impacts and adaptation costs for Europe. In: De la Vega-Leinert A, Nicholls RJ, Tol RSJ (eds) European vulnerability and adaptation to the impacts of accelerated sea level rise. Flood Hazard Research Centre, EnfieldGoogle Scholar
  66. Ortiz JC (2012) Exposure of the Colombian Caribbean coast, including San Andrés Island, to tropical storms and hurricanes, 1900–2010 (2012). Nat Hazards J 61:815–827CrossRefGoogle Scholar
  67. Ortiz JC, Otero LJ, Restrepo JC, Ruiz J, Cadena M (2013) Cold fronts in the Colombian Caribbean Sea and their relationship to extreme wave events. Nat Hazards Earth Syst Sci 13:2797–2804CrossRefGoogle Scholar
  68. Otero LJ, Ortiz JC, Ruiz J, Higgins A, Henriquez S (2016) Storms or cold fronts: what is really responsible for the extreme waves regime in the Colombian Caribbean coast? Nat Hazards Earth Syst Sci 16:1–11CrossRefGoogle Scholar
  69. Özyurt G, Ergin A (2009) Application of sea level rise vulnerability assessment model to selected coastal areas of Turkey. J Coast Res 51:248–251Google Scholar
  70. Pajak MJ, Leatherman S (2002) The high water line as shoreline indicator. J Coast Res 18(2):329–337Google Scholar
  71. Phillips M, Crisp S (2010) Sea level trends and NAO influences: The Bristol Chanel/Seven Estuary. Glob Planet Chang 73:211–218CrossRefGoogle Scholar
  72. Pilkey O, Dixon K (1996) The corps and the shore. Island Press, Washington, DCGoogle Scholar
  73. Prado MFV, Camargo JM, Muler M, Dalinghaus C, Gomes da Silva P, Camargo RSV, Porpilho D, Rocha RS, Weschenfelder J, Bonetti J, Klein AHF (2015) Measurement of coastal hazards and determination of future set-back lines in northern of Santa Catrina Island, Brazil. In: Proceedings of the coastal sediments 2015 conference, 11–15 May 2015. World Scientific Publishing Company, San Diego, pp 1–16Google Scholar
  74. Pye K, Blott SJ (2008) Decadal-scale variation in dune erosion and accretion rates: an investigation of the significance of changing storm tide frequency and magnitude on the Sefton coast, UK. Geomorphology 102:652–666CrossRefGoogle Scholar
  75. Raji O, Niazi S, Snoussi M, Dezileau L, Khouakhi A (2013) Vulnerability assessment of a lagoon to sea level rise and storm events: Nador lagoon (NE Morocco). J Coast Res 65:802–807CrossRefGoogle Scholar
  76. Rangel-Buitrago N, Anfuso G (2013) Winter wave climate, storms and regional cycles: the SW Spanish Atlantic coast. Int J Climatol 33:2142–2156CrossRefGoogle Scholar
  77. Rangel-Buitrago N, Anfuso G (2015) Risk assessment of storms in coastal zones: case studies from Cartagena (Colombia) and Cadiz (Spain). Springer, DordrechtGoogle Scholar
  78. Rangel-Buitrago N, Anfuso G, Correa I, Ergin A, Williams AT (2013) Assessing and managing scenery of the Caribbean coast of Colombia. Tour Manag 35:41–58CrossRefGoogle Scholar
  79. Rangel-Buitrago N, Anfuso G, Williams AT (2015) Coastal erosion along the Caribbean coast of Colombia: magnitudes, causes and management. Ocean Coast Manag 114:129–144CrossRefGoogle Scholar
  80. Restrepo J, Otero L, Casas AC, Henao A, Gutiérrez J (2012) Shoreline changes between 1954 and 2007 in the marine protected area of the Rosario Island archipelago (Caribbean of Colombia). Ocean Coast Manag 69:133–142CrossRefGoogle Scholar
  81. Restrepo JD, Lopez S (2008) Morphodynamics of the Pacific and Caribbean deltas of Colombia – South America. J S Am Earth Sci 25:1–21CrossRefGoogle Scholar
  82. Rygel L, O'Sullivan D, Yarnal B (2006) A method for constructing a social vulnerability index: an application to hurricane storm surges in a developed country. Mitig Adapt Strateg Glob Chang 11:741–764CrossRefGoogle Scholar
  83. Santos M, Del Río L, Benavente J (2013) GIS-based approach to the assessment of coastal vulnerability to storms. case study in the Bay of Cádiz (Andalusia, Spain). J Coast Res 65:826–831CrossRefGoogle Scholar
  84. Shaw J, Taylor RB, Forbes DL, Ruz MH, Solomon S (1998) Sensitivity of the coasts of Canada to sea-level rise. Bull Geol Surv Can 505:1–79Google Scholar
  85. Small C, Nicholls RJ (2003) A global analysis of human settlement in coastal zones. J Coast Res 19:584–599Google Scholar
  86. Stockdon HF, Holman RA, Howd PA, Sallenger AH (2006) Empirical parameterization of setup, swash, and runup. Coast Eng 53:573–588CrossRefGoogle Scholar
  87. Thieler ER, Himmelstoss EA, Zichichi JL, Miller TL (2005) Digital shoreline analysis system (DSAS) version 3.0 – an ArcGIS extension for calculating shoreline change. US geological survey, Woods HoleGoogle Scholar
  88. Villa F, McLeod H (2002) Environmental vulnerability indicators for environmental planning and Decision-making: guidelines and applications. Environ Manag 29:335–348CrossRefGoogle Scholar
  89. Williams AT, Alveirinho-Dias J, Garcia Novo F, Garcia-Mora MR, Curr RH, Pereira A (2001) Integrated coastal dune management: checklists. Cont Shelf Res 21:1937–1960CrossRefGoogle Scholar
  90. Williams AT, Davies P (2001) Coastal dunes of Wales: vulnerability and protection. J Coast Conserv 7:145–154CrossRefGoogle Scholar
  91. Williams AT, Rangel-Buitrago N, Anfuso G, Cervantes O, Botero C (2016) Litter impacts on scenery and tourism on the Colombian north Caribbean coast. Tour Manag 55:1–16CrossRefGoogle Scholar
  92. World Resources Institute (2010) Decision making in a changing climate. United Nations Development Programme, World Bank and World Resources Institute, Washington, DCGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Nelson Guillermo Rangel-Buitrago
    • 1
    Email author
  • Giorgio Anfuso
    • 2
  • Allan Williams
    • 3
    • 4
  • Jarbas Bonetti
    • 5
  • Gracia C. Adriana
    • 6
  • Juan Carlos Ortiz
    • 7
  1. 1.Departamento de Física, Facultad de Ciencias BásicasUniversidad del Atlántico, Antigua vía Puerto ColombiaBarranquillaColombia
  2. 2.Departamento de Ciencias de la Tierra, Facultad de Ciencias del Mar y Ambientales, Universidad de CádizPolígono río San Pedro s/nCádizSpain
  3. 3.Faculty of Architecture, Computing and EngineeringUniversity of Wales, Trinity Saint DavidSwanseaUK
  4. 4.CICA NOVA, Nova Universidad de LisboaLisbonPortugal
  5. 5.Federal University of Santa Catarina, Coastal Oceanography LaboratoryFlorianopolisBrazil
  6. 6.Departamento de Biología, Facultad de Ciencias BásicasUniversidad del AtlánticoBarranquillaColombia
  7. 7.Departamento de Física y Geociencias, División de Ciencias BásicasUniversidad del NorteBarranquillaColombia

Personalised recommendations