Advertisement

State-of-the-Art Users’ Risk Assessment on Beaches from the Tree of Science Platform

  • Omar CervantesEmail author
  • Camilo M. Botero
  • Charles W. Finkl
Chapter
Part of the Coastal Research Library book series (COASTALRL, volume 24)

Abstract

A State-of-the-Art of scientific literature related with risk assessment on beaches is presented, from utilization of the Tree of Science® tool – ToS. In a search done in November 2016, 76 papers were found in the Web of Science® with the combination of words ‘beach’ and ‘risk management’. Papers were classified by ToS in roots (high input degree; n = 9), trunks (high intermediation degree; n = 10) and leaves (high output degree; n = 56). Water research was the most relevant journal, with seven articles published (9.2%), which help to Elsevier to be the most relevant publisher in this topic (n = 28; 36.8%). Timothy J. Wade, Alfred P. Dufour and Helena M. Solo-Gabriele were the most relevant authors, with articles in trunks and leaves and participation in five of papers. Analysis of author affiliations shows the United States (n = 213; 52%) in the lead, followed by United Kingdom (n = 45; 11%) and Greece (n = 26; 6%). A general overview identifies a growing ToS in beach risk assessment, with some very strong references in leaves, and several others of less importance. Finally, analysis from branches suggests research focused around three subtopics (coastal risk assessment, environmental variable associations and Health Risk, Species risk, Water quality and infectious disease), which soon might be a new ToS in the deep forest of the beach management theme.

References

  1. Ahmed W, Harwood VJ, Gyawali P, Sidhu SPS, Toze S (2015) Comparison of concentration methods for quantitative detection of sewage-associated viral markers in environmental waters. Appl Environ Microbiol 81:2042–2049. doi: 10.1128/AEM.03851-14 CrossRefGoogle Scholar
  2. Ashbolt NJ, Shoen ME, Soller JA, Roser DJ (2010) Predicting pathogen risks to aid beach management: the real value of quantitative microbial risk assessment (QMRA). Water Res 44:4692–4703. doi: 10.1016/j.watres.2010.06.048 CrossRefGoogle Scholar
  3. Bagdanaviciute I, Loreta TS (2015) Multi-criteria evaluation approach to coastal vulnerability index development in micro-tidal low-lying areas. Ocean Coast Manage 104:124–135. doi: 10.1016/j.ocecoaman.2014.12.011 CrossRefGoogle Scholar
  4. Bheeroo RA, Chandrasekar N, Kaliraj S, Magesh NS (2016) Shoreline change rate and erosion risk assessment along the Trou Aux Biches–Mont choisy beach on the northwest coast of Mauritius using GIS-DSAS technique. Environ Earth Sci 75:444. doi: 10.1007/s12665-016-5311-4 CrossRefGoogle Scholar
  5. Black JC et al (2016) Risk assessment for children exposed to beach sands impacted by oil spill chemicals. Int J Environ Res Public Health 13:853. doi: 10.3390/ijerph13090853 CrossRefGoogle Scholar
  6. Bonilla TD et al (2007) Prevalence and distribution of fecal indicator organisms in South Florida beach sand and preliminary assessment of health effects associated with beach sand exposure. Mar Pollut Bull 54:1472–1482. doi: 10.1016/j.marpolbul.2007.04.016 CrossRefGoogle Scholar
  7. Botes M, Kwaadsteniet M, Cloete TE (2013) Application of quantitative PCR for the detection of microorganisms in water. Anal Bioanal Chem 405:91–108. doi: 10.1007/s00216-012-6399-3 CrossRefGoogle Scholar
  8. Brill D (2014) Sediment transport and hydrodynamic parameters of tsunami waves recorded in onshore geoarchives. J Coast Res 30:922–941. doi: 10.2112/JCOASTRES-D-13-00206.1 CrossRefGoogle Scholar
  9. Bruun P (1962) Sea-level rise as a cause of shore erosion. J Waterw Harb 88:117Google Scholar
  10. Carrasco AR, Ferreira O, Freire MA, P. (2012) Flood hazard assessment and management of fetch-limited coastal environments. Ocean Coast Manage 65:15–25. doi: 10.1016/j.ocecoaman.2012.04.016 CrossRefGoogle Scholar
  11. Cheung PK, Yuen KL, Li PF, Lau WH, Chiu CM, Yuen SW, Baker DM (2015) To swim or not to swim? A disagreement between microbial indicators on beach water. Mar Pollut Bull 101:53–60. doi: 10.1016/j.marpolbul.2015.11.029 CrossRefGoogle Scholar
  12. Colford JM, Wade TJ, Schiff KC, Wright CC, Griffith JF, Sandhu SK, Burns S, Sobsey M, Lovelace G, Weisberg SB (2007) Water quality indicators and the risk of illness at beaches with nonpoint sources of fecal contamination. Epidemiology 18:27–35. doi: 10.1097/01.ede.0000249425.32990.b9 CrossRefGoogle Scholar
  13. Corsi SR et al (2016) Human and bovine viruses and bacteria at three great lakes beaches: environmental variable associations and health risk. Environ Sci Technol 50:987–995. doi: 10.1021/acs.est.5b04372 CrossRefGoogle Scholar
  14. Dada AC, Hamilton DP (2016) Predictive models for determination of E. coli concentrations at inland recreational beaches. Water Air Soil Pollut 227:347. doi: 10.1007/s11270-016-3033-6 CrossRefGoogle Scholar
  15. Dorevitch S, Phanthi S, Huang Y, Li H, Michalek AM, Pratap P, Wroblewski M, Liu L, Scheff PA, Li A (2011) Water ingestion during water recreation. Water Res 45:2020–2028. doi: 10.1016/j.watres.2010.12.006 CrossRefGoogle Scholar
  16. Dufour AP, Evans O, Behymer TD, Cantú R (2006) Water ingestion during swimming activities in a pool: a pilot study. J Water Health 4:425–430Google Scholar
  17. Fujioka RS, Solo-Gabriele HM, Byappanahalli MN, Kirs M (2015) U.S. recreational water quality criteria: a vision for the future. Int J Environ Res Public Health 12:7752–7776. doi: 10.3390/ijerph120707752 CrossRefGoogle Scholar
  18. Goodwin KD, McNay M, Cao Y, Ebentier D, Madison M, Griffith JF (2012) A multi-beach study of Staphylococcus aureus, MRSA, and enterococci in seawater and beach sand. Water Res 46:4195–4207. doi: 10.1016/j.watres.2012.04.001 CrossRefGoogle Scholar
  19. Gorham TJ, Lee J (2016) Pathogen loading from canada geese faeces in freshwater: potential risks to human health through recreational water exposure. Zoonoses Public Health 63:177–190. doi: 10.1111/zph.12227 CrossRefGoogle Scholar
  20. Goto K, Chagué-Goff C, Goff J, Jaffe BE (2012) The future of tsunami research following the 2011 Tohoku-oki event. Sediment Geol 282:1–13. doi: 10.1016/j.sedgeo.2012.08.003 CrossRefGoogle Scholar
  21. Harwell MA, Gentile JCH (2013) Quantifying long-term risks to sea otters from the 1989 ‘Exxon Valdez’ oil spill: comment on Bodkin et al. (2012). Mar Ecol Prog Ser 488:291–296. doi: 10.3354/meps10497 CrossRefGoogle Scholar
  22. Hayasaka D, Goka K, Thawatchai W, Fujiwara K (2012) Ecological impacts of the 2004 Indian Ocean tsunami on coastal sand-dune species on Phuket Island, Thailand. Biodivers Conserv 21:1971–1985. doi: 10.1007/s10531-012-0288-0 CrossRefGoogle Scholar
  23. Heaney CD, Sams E, Wing S, Marshall S, Brenner K, Dufour AP, Wade TJ (2009) Contact with beach sand among beachgoers and risk of illness. Am J Epidemiol 170:164–172. doi: 10.1093/aje/kwp152 CrossRefGoogle Scholar
  24. Imhof HK, Schmid J, Niessen R, Ivleva P, Laforsch C (2012) A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnol Oceanogr Methods 10:524–537. doi: 10.4319/lom.2012.10.524 CrossRefGoogle Scholar
  25. Julio C, Sá C, Ferreira I, Martins S, Oleastro M, Angelo H, Guerreiro J, Tenreiro R (2012) Waterborne transmission of giardia and cryptosporidium at river beaches in Southern Europe (Portugal). J Water Health 10:484–496. doi: 10.2166/wh.2012.030 CrossRefGoogle Scholar
  26. Kaas L, Gourinat AC, Urbes F, Langlet J (2016) A 1-year study on the detection of human enteric viruses in New Caledonia. Food Environ Virol 8:46–56. doi: 10.1007/s12560-015-9224-2 CrossRefGoogle Scholar
  27. Kaiser G, Burkhard B, Römer H, Sangkaew S, Graterol R, Haitook T, Sterr H, Sakuna-Schwartz D (2013) Mapping tsunami impacts on land cover and related ecosystem service supply in Phang Nga, Thailand. Nat Hazard Earth Syst 13:3095–3111. doi: 10.5194/nhess-13-3095-2013 CrossRefGoogle Scholar
  28. Katselidis KA, Schofield G, Stamou G, Dimopoulos P, Pantis JD (2014) Employing sea-level rise scenarios to strategically select sea turtle nesting habitat important for long-term management at a temperate breeding area. J Exp Mar Biol Ecol 450:47–54. doi: 10.1016/j.jembe.2013.10.017 CrossRefGoogle Scholar
  29. Kay D, Jones F, Wyer MD, Fleisher JM, Salmon RL, Godfree AF, Zelenauch A, Shore R (1994) Predicting likelihood of gastroenteritis from sea bathing: results from randomised exposure. Lancet 344:905–909. doi: 10.1016/S0140-6736(94)92267-5 CrossRefGoogle Scholar
  30. Kennedy DM, Sherker S, Brighton B, Weir A, Woodroffe CD (2013) Rocky coast hazards and public safety: moving beyond the beach in coastal risk management. Ocean Coast Manage 82:85–94. doi: 10.1016/j.ocecoaman.2013.06.001 CrossRefGoogle Scholar
  31. Korajkic A, Wanjugi P, Harwood VJ (2013) Indigenous microbiota and habitat influence Escherichia coli survival more than sunlight in simulated aquatic environments. Appl Environ Microbiol 79:5329–5337. doi: 10.1128/AEM.01362-13 CrossRefGoogle Scholar
  32. Kwon BG, Koizumi K, Chung SY, Kodera Y, Kim JO, Saido K (2015) Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution. J Hazard Mater 300:359–367. doi: 10.1016/j.jhazmat.2015.07.039 CrossRefGoogle Scholar
  33. Li X, Harwood VJ, Nayak B, Weidhaas JL (2016) Ultrafiltration and microarray detect microbial source tracking marker and pathogen genes in riverine and marine systems. Appl Environ Microbiol 82(5):1625–1635. doi: 10.1128/AEM.02583-15 CrossRefGoogle Scholar
  34. Li ZQ (2016) Rip current hazards in South China headland beaches. Ocean Coast Manag 121:23–32. doi: 10.1016/j.ocecoaman.2015.12.005 CrossRefGoogle Scholar
  35. Lopez I, Alvarez C, Gil JL, Garcia A, Barcena JF, Revilla JA (2013a) A method for the source apportionment in bathing waters through the modelling of wastewater discharges: development of an indicator and application to an urban beach in Santander (Northern Spain). Ecol Indic 24:334–343. doi: 10.1016/j.ecolind.2012.07.003 CrossRefGoogle Scholar
  36. Lopez I, Alvarez C, Gil JL, Revilla JA (2013b) Methodology to elaborate the bathing water profile on urban beaches, according to the requirements of the European directive 2006/7/EC: the case of Santander beaches. Water Sci Technol 68:1037–1047. doi: 10.2166/wst.2013.342 CrossRefGoogle Scholar
  37. Lozoya JP, Sarda R, Jimenez JA (2011) A methodological framework for multi-hazard risk assessment in beaches. Environ Sci Pol 14:685–696. doi: 10.1016/j.envsci.2011.05.002 CrossRefGoogle Scholar
  38. Malham SK, Nenow R, Howlett E, Tuson KE, Perkins TL, Pallett DW, Wang H, Jago CF, Jones DL, McDonald JE (2014) The interaction of human microbial pathogens, particulate material and nutrients in estuarine environments and their impacts on recreational and shellfish waters. Environ Sci Process Impacts 16:2145–2155. doi: 10.1039/c4em00031e CrossRefGoogle Scholar
  39. Marion JW, Lee C, Soo Lee C, Wang Q, Lemeshow S, Buckley T, Saif LJ, LEE J (2014) Integrating bacterial and viral water quality assessment to predict swimming-associated illness at a Freshwater Beach: a cohort study. Plos ONE 9:pE112029. doi: 10.1371/journal.pone.0112029 CrossRefGoogle Scholar
  40. Mather AA, Stretch DD (2012) A perspective on sea level rise and coastal storm surge from Southern and Eastern Africa: a case study near Durban, South Africa. Water 4:237–259. doi: 10.3390/w4010237 CrossRefGoogle Scholar
  41. Merlotto A, Bertola GR, Piccolo MC (2016) Hazard, vulnerability and coastal erosion risk assessment in Necochea municipality, Buenos Aires Province, Argentina. J Coast Conserv 20:351–362. doi: 10.1007/s11852-016-0447-7 CrossRefGoogle Scholar
  42. Ming HX, Zhu L, Feng JF, Yang G, Fan JF (2014) Risk assessment of rotavirus infection in surface. Hum Ecol Risk Assess 20:929–940. doi: 10.1080/10807039.2012.716687 CrossRefGoogle Scholar
  43. Molina M, Hunters S, Cyterski M, Peed LA, Kelty CA, Sivaganesan M, Mooney T, Prieto L, Shanks O (2014) Factors affecting the presence of human-associated and fecal indicator real-time quantitative PCR genetic markers in urban-impacted recreational beaches. Water Res 64:196–208. doi: 10.1016/j.watres.2014.06.036 CrossRefGoogle Scholar
  44. Monioudi IN et al (2016) Assessment of vulnerability of the eastern Cretan beaches (Greece) to sea level rise. Reg Environ Chang 16:19511962. doi: 10.1007/s10113-014-0730-9 CrossRefGoogle Scholar
  45. Montgomery MC, Chakraborty J (2015) Assessing the environmental justice consequences of flood risk: a case study in Miami, Florida. Environ Res Lett 10:p095010. doi: 10.1088/1748-9326/10/9/095010 CrossRefGoogle Scholar
  46. Moreira FT, Silva B, Barbosa L, Turra A (2016) Revealing accumulation zones of plastic pellets in sandy beaches. Environ Pollut 218:313–321. doi: 10.1016/j.envpol.2016.07.006 CrossRefGoogle Scholar
  47. Newton RJ, VandeWalle JL, Borchardt MA, Gorelick MC, McLellan SL (2011) Lachnospiraceae and Bacteroidales alternative fecal indicators reveal chronic human sewage contamination in an Urban Harbor. Appl Environ Microbiol 77:6972–6981. doi: 10.1128/AEM.05480-11 CrossRefGoogle Scholar
  48. Oster RJ et al (2014) Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches. Environ Sci Technol 48:14148–14157. doi: 10.1021/es5038657 CrossRefGoogle Scholar
  49. Papastergiou P, Mouchtouri V, Pinaka O, Katsiaflaka A, Rachiotis G, Hadjichristodoulou C (2012) Elevated bathing-associated disease risks despite certified. Int J Environ Res Public Health 9:1548–1565. doi: 10.3390/ijerph9051548 CrossRefGoogle Scholar
  50. Patz JA, Vavrus SJ, Uejio CK, McLellan SL (2008) Climate change and waterborne disease risk in the Great Lakes region of the U.S. Am J Prev Med 35:451. doi: 10.1016/j.amepre.2008.08.026 CrossRefGoogle Scholar
  51. Pilarczyk JE, Dura T, Horton BP, Engelhart S, Kemp AC, Sawai Y (2014) Microfossils from coastal environments as indicators of paleo-earthquakes, tsunamis and storms. Palaeogeogr Palaeoclimatol Palaeoecol 413:144–147. doi: 10.1016/j.palaeo.2014.06.033 CrossRefGoogle Scholar
  52. Pruss A (1998) Review of epidemiological studies on health effects from exposure to recreational water. Int J Epidemiol 27:1–9. doi: 10.1093/ije/27.1.1 CrossRefGoogle Scholar
  53. Reece JS et al (2013) Sea level rise, land use, and climate change influence the distribution of loggerhead turtle nests at the largest USA rookery (Melbourne Beach, Florida). Mar Ecol Prog Ser 493:259–274. doi: 10.3354/meps10531 CrossRefGoogle Scholar
  54. Rizzi J, Gallina V, Torresan S, Critto A, Gana S, Marcomini A (2016) Regional risk assessment addressing the impacts of climate change in the coastal area of the Gulf of Gabes (Tunisia). Sustain Sci 11:455–476. doi: 10.1007/s11625-015-0344-2 CrossRefGoogle Scholar
  55. Robledo-Giraldo S, Duque-Méndez ND, Zuluaga-Giraldo J (2013) Difusión de productos a través de redes sociales: una revisión bibliográfica utilizando la teoría de grafos. Respuestas 18:28–42Google Scholar
  56. Robledo-Giraldo S, Osorio-Zuluaga GA, López-Espinosa C (2014) Networking en pequeña empresa: una revisión bibliográfica utilizando la teoria de grafos. Rev Vinculos 11:49 ST-Teoria de GrafosGoogle Scholar
  57. Rodrigues VFV, Rivera ING, Lim KY, Jiang SC (2016) Detection and risk assessment of diarrheagenic E. coli in recreational beaches of Brazil. Mar Pollut Bull 109:163–170. doi: 10.1016/j.marpolbul.2016.06.007 CrossRefGoogle Scholar
  58. Rodriguez AS (2015) Occurrence of eight UV filters in beaches of Gran Canaria (Canary Islands). An approach to environmental risk assessment. Chemosphere 131:85–90. doi: 10.1016/j.chemosphere.2015.02.054 CrossRefGoogle Scholar
  59. Royo ML, Ranasinghe R, Jiménez JA (2016) A rapid, low-cost approach to coastal vulnerability assessment at a national level. J Coast Res 32:932–945. doi: 10.2112/JCOASTRES-D-14-00217.1 CrossRefGoogle Scholar
  60. Schneider B, Hoffman G, Reicherter K (2016) Scenario-based tsunami risk assessment using a static flooding approach. Glob Planet Chang 139:183–194. doi: 10.1016/j.gloplacha.2016.02.005 CrossRefGoogle Scholar
  61. Schoen ME, Ashbolt NJ (2010) Assessing pathogen risk to swimmers at non-sewage impacted recreational beaches. Environ Sci Technol 44:2286–2291. doi: 10.1021/es903523q CrossRefGoogle Scholar
  62. Shibata T, Solo-Gabriele HM (2012) Quantitative microbial risk assessment of human illness from exposure to Marine Beach Sand. Environ Sci Technol 46:2799–2805. doi: 10.1021/es203638x CrossRefGoogle Scholar
  63. Soller J et al (2015) Estimated human health risks from recreational exposures to stormwater runoff containing animal faecal material. Environ Model Softw 72:21–32. doi: 10.1016/j.envsoft.2015.05.018 CrossRefGoogle Scholar
  64. Soller JA, Shoen ME, Ravenscroft JE, Ashbolt NJ (2010) Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Res 44:4674–4691. doi: 10.1016/j.watres.2010.06.049 CrossRefGoogle Scholar
  65. Solo-Gabriele HM et al (2016) Beach sand and the potential for infectious disease transmission: observations and recommendations. J Mar Biol Assoc UK 96:101–120. doi: 10.1017/S0025315415000843 CrossRefGoogle Scholar
  66. Stewart JR et al (2008) The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs. Environ Health 7:S3. doi: 10.1186/1476-069X-7-S2-S3 CrossRefGoogle Scholar
  67. Stockdon HF, Holman RA, Howd PA, Sallenger H (2006) Empirical parameterization of setup, swash, and runup. Coast Eng 53:573–588. doi: 10.1016/j.coastaleng.2005.12.005 CrossRefGoogle Scholar
  68. Stone DL, Harding AK, Mason S (2008) Exposure assessment and risk of gastrointestinal illness among surfers. J Toxicol Environ Health A 71:1603–1615. doi: 10.1080/15287390802414406 CrossRefGoogle Scholar
  69. Tong HI (2011) Effective detection of human adenovirus in Hawaiian waters using enhanced PCR methods. Virol J 8:57. doi: 10.1186/1743-422X-8-57 CrossRefGoogle Scholar
  70. Tseng LY, Jiang SC (2012) Comparison of recreational health risks associated with surfing and swimming in dry weather and post-storm conditions at Southern California beaches using quantitative microbial risk assessment (QMRA). Mar Pollut Bull 64:912–918. doi: 10.1016/j.marpolbul.2012.03.009 CrossRefGoogle Scholar
  71. Wade TJ, Calderon RL, Sams E, Beach M, Brenner KP, Williams AH, Dufour AP (2006) Rapidly measured indicators of recreational water quality are predictive of swimming-associated gastrointestinal illness. Environ Health Perspect 114:24–28. doi: 10.1289/ehp.8273 CrossRefGoogle Scholar
  72. Wade TJ, Calderon RL, Brenner KP, Sams E, Beach M, Haugland R, Wymer L, Dufour AP (2008) High sensitivity of children to swimming-associated gastrointestinal illness: results using a rapid assay of recreational water quality. Epidemiology 19:375–383. doi: 10.1097/EDE.0b013e318169cc87 CrossRefGoogle Scholar
  73. Wainwright DJ, Ranasinghe R, Callaghan DP, Woodroffe CD, Cowell PJ, Rogers K (2014) An argument for probabilistic coastal hazard assessment: retrospective examination of practice in New South Wales, Australia. Ocean Coast Manag 95:147–155. doi: 10.1016/j.ocecoaman.2014.04.009 CrossRefGoogle Scholar
  74. Wong M, Kumar L, Jenkins TM, Xagoraraki I, Phanikumar MS, Rose JB (2009) Evaluation of public health risks at recreational beaches in Lake Michigan via detection of enteric viruses and a human-specific bacteriological marker. Water Res 43:1137–1147. doi: 10.1016/j.watres.2008.11.051 CrossRefGoogle Scholar
  75. World Health Organisation (2004) Guidelines for safe recreational water environments volume 1: coastal and fresh waters. Guid Safe Recr Wat E 1Google Scholar
  76. Wymer LJ, Wade TJ, Dufour AP (2013) Equivalency of risk for a modified health endpoint: a case from recreational water epidemiology studies. BMC Public Health 13:459. doi: 10.1186/1471-2458-13-459 CrossRefGoogle Scholar
  77. Xagoraraki I, Kuo DH, Wong K, Wong M, Rose JB (2007) Occurrence of human adenoviruses at two recreational beaches of the Great Lakes. Appl Environ Microbiol 73:7874–7881. doi: 10.1128/AEM.01239-07 CrossRefGoogle Scholar
  78. Yavuz BM, Jones RM, Barker DF, Vannoy E, Dorevitch S (2014) Receiver-operating characteristics analysis: a new approach to predicting the presence of pathogens in surface waters. Environ Sci Technol 48:5628–5635. doi: 10.1021/es4047044 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Facultad de Ciencias MarinasUniversidad de ColimaManzanilloMexico
  2. 2.School of LawUniversidad Sergio ArboledaSanta MartaColombia
  3. 3.Coastal Education and Research Foundation (CERF)FletcherUSA
  4. 4.Department of GeosciencesFlorida Atlantic UniversityBoca RatonUSA

Personalised recommendations