Advertisement

A Hybrid CA-ANN-Fuzzy Model for Simulating Coastal Changing Patterns

  • Jorge Rocha
  • Francisco GutierresEmail author
  • Pedro Gomes
  • Ana Cláudia Teodoro
Chapter
Part of the Coastal Research Library book series (COASTALRL, volume 24)

Abstract

Shoreline erosion is a problem that causes major concerns to coastal cities worldwide. About 70% of the world’s sandy beaches retreated at a rate of 0.5–1.0 m.year−1. Therefore, the protection against beach loss and appropriate land management along the shoreline are critical issues that need to be addressed. The modelling and simulation of dynamic and complex systems, such as coastal areas, are important for the definition of an innovative planning and management strategy. To explore sandy beaches threatened by shoreline retreat, this works aims to develop a geosimulation hybrid model. The geosimulation (geocomputation) is an emergent field of analysis embracing heuristic search, artificial neural networks and cellular automata, among others. In this chapter we present a method to simulate both the coast line and the land use/cover evolution in a developed costal area reality, by coupling cellular automata (CA) and multi-layer perceptron (MLP) artificial neural network (ANN) with fuzzy set theory (CA–ANN-Fuzzy) in a GIS environment. Such alterations simulation solely by means of cellular automata isn’t suitable, because these models, in its more conventional structure, comprise limitations in the space parameters and transition rules. In this work a neural network is used to calibrate the importance degree that each prediction variable (probability) has in the geographic constraints (weights), i.e. considers spatial and temporal nonlinearities of the driving forces underlying the urban growth processes, while fuzzy set theory captures the uncertainty associated with transition rules. The proposed method predict high shoreline drawbacks in only 14 years, mainly at North (40 meters) and West (20 meters). The model has an overall accuracy of 86% (14% of error in 60 years).

Keywords

Simulation Cellular automata Artificial neural networks Fuzzy logic 

References

  1. Abrahart RJ, Anctil F, Coulibaly P et al (2012) Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting. Prog Phys Geogr 36:480–513CrossRefGoogle Scholar
  2. Alizadeh G, Vafakhah M, Azarmsa A, Torabi M (2011) Using an artificial neural network to model monthly shoreline variations. In: 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), pp 4893–4896Google Scholar
  3. Al-sharif AA, Pradhan B (2014) Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arab J Geosci 7:4291–4301. doi: 10.1007/s12517-013-1119-7 CrossRefGoogle Scholar
  4. Arsanjani JJ, Helbich M, Mousivand AJ (2014) A morphological approach to predicting urban expansion. Trans GIS 18:219–233. doi: 10.1111/tgis.12031 CrossRefGoogle Scholar
  5. Arun PV, Katiyar SK (2013) An intelligent approach towards automatic shape modelling and object extraction from satellite images using cellular automata-based algorithms. GIScience Remote Sens 50:337–348. doi: 10.1080/15481603.2013.802870 Google Scholar
  6. Azari M, Tayyebi A, Helbich M, Reveshty MA (2016) Integrating cellular automata, artificial neural network, and fuzzy set theory to simulate threatened orchards: application to Maragheh, Iran. GIScience Remote Sens 53:183–205. doi: 10.1080/15481603.2015.1137111 CrossRefGoogle Scholar
  7. Barredo JI, Kasanko M, McCormick N, Lavalle C (2003) Modelling dynamic spatial processes: simulation of urban future scenarios through cellular automata. Landsc Urban Plan 64:145–160.  http://dx.doi.org/10.1016/S0169-2046(02)00218-9 CrossRefGoogle Scholar
  8. Basse RM, Omrani H, Charif O et al (2014) Land use changes modelling using advanced methods: cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Appl Geogr 53:160–171.  http://dx.doi.org/10.1016/j.apgeog.2014.06.016 CrossRefGoogle Scholar
  9. Batty M, Xie Y (1994) From cells to cities. Environ Plan B Plan Des 21:s31–s48CrossRefGoogle Scholar
  10. Bruun P (1988) The Bruun rule of erosion by sea-level rise: a discussion on large-scale two- and three-dimensional usages. J Coast Res 4:627–648Google Scholar
  11. Christman Z, Rogan J, Eastman JR, Turner BL (2015) Quantifying uncertainty and confusion in land change analyses: a case study from central Mexico using MODIS data. GIScience Remote Sens 52:543–570. doi: 10.1080/15481603.2015.1067859 Google Scholar
  12. Church JA, White NJ, Aarup T et al (2008) Understanding global sea levels: past, present and future. Sustain Sci 3:9–22. doi: 10.1007/s11625-008-0042-4 CrossRefGoogle Scholar
  13. Clarke KC, Gaydos LJ (1998) Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. Int J Geogr Inf Sci 12:699–714. doi: 10.1080/136588198241617
  14. Clarke KC, Hoppen S, Gaydos L (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ Plan B Plan Des 24:247–261CrossRefGoogle Scholar
  15. Davidson MA, Lewis RP, Turner IL (2010) Forecasting seasonal to multi-year shoreline change. Coast Eng 57:620–629.  http://dx.doi.org/10.1016/j.coastaleng.2010.02.001 CrossRefGoogle Scholar
  16. Davidson-Arnott RGD (2005) Conceptual model of the effects of sea level rise on Sandy Coasts. J Coast Res 21(6):1166–1172. doi: 10.2112/03-0051.1 CrossRefGoogle Scholar
  17. de Alegría-Arzaburu AR, Pedrozo-Acuña A, Horrillo-Caraballo JM et al (2010) Determination of wave–shoreline dynamics on a macrotidal gravel beach using canonical correlation analysis. Coast Eng 57:290–303.  http://dx.doi.org/10.1016/j.coastaleng.2009.10.014 CrossRefGoogle Scholar
  18. Douglas BC, Crowell M (2012) Long-term shoreline position prediction and error propagation. J Coast Res (ISSN 0749-0208) 16:145–152Google Scholar
  19. Eastman JR (2006) IDRISI Andes Tutorial. Clark University, WorcesterGoogle Scholar
  20. Ferreira J, Laranjeira M (1991) Avaliação da vulnerabilidades e risco biofísico em áreas litorais sob pressão antrópica. Contributo metodológico para uma gestão ambiental.pdf. GeoInova, 153–170Google Scholar
  21. Ghorbani MA, Khatibi R, Aytek A et al (2010) Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks. Comput Geosci 36:620–627.  http://dx.doi.org/10.1016/j.cageo.2009.09.014 CrossRefGoogle Scholar
  22. Goncalves RM, Awange JL, Krueger CP et al (2012) A comparison between three short-term shoreline prediction models. Ocean Coast Manag 69:102–110.  http://dx.doi.org/10.1016/j.ocecoaman.2012.07.024 CrossRefGoogle Scholar
  23. Gong P (1996) Integrated analysis of spatial data from multiple Sources: using evidential reasoning and artificial neural network techniques for geological mapping. Photogramm Eng Remote Sens 62:513–523Google Scholar
  24. Grekousis G, Photis YN (2014) Analyzing high-risk emergency areas with GIS and neural networks: the case of Athens, Greece. Prof Geogr 66:124–137. doi: 10.1080/00330124.2013.765300 CrossRefGoogle Scholar
  25. Grekousis G, Manetos P, Photis YN (2013) Modeling urban evolution using neural networks, fuzzy logic and GIS: the case of the Athens metropolitan area. Cities 30:193–203. doi: 10.1016/j.cities.2012.03.006 CrossRefGoogle Scholar
  26. Hagenauer J, Helbich M (2012) Mining urban land-use patterns from volunteered geographic information by means of genetic algorithms and artificial neural networks. Int J Geogr Inf Sci 26:963–982. doi: 10.1080/13658816.2011.619501 CrossRefGoogle Scholar
  27. Hughes SA (1993) Coastal structure models. World Scientific, SingaporeCrossRefGoogle Scholar
  28. Landis JD (1995) Imagining land use futures: applying the California urban futures model. J Am Plan Assoc 61:438–457. doi: 10.1080/01944369508975656 CrossRefGoogle Scholar
  29. Landis JD, Zhang M (1998) The second generation of the California urban futures model. Parts I, II, and III (with M. Zhang). Environ Plann B Plann Des 25:657–666CrossRefGoogle Scholar
  30. Lee S-T, Wu C-W, Lei T-C (2013) CA-GIS model for dynamic simulation of commercial activity development by the combination of ANN and Bayesian probability. Procedia Comput Sci 18:651–660.  http://dx.doi.org/10.1016/j.procs.2013.05.229 CrossRefGoogle Scholar
  31. Li X, Yeh AGO (1998) Principal component analysis of stacked multi-temporal images for the monitoring of rapid urban expansion in the Pearl River Delta. Int J Remote Sens 19:1501–1518. doi: 10.1080/014311698215315 CrossRefGoogle Scholar
  32. Li X, Yeh AG-O (2000) Modelling sustainable urban development by the integration of constrained cellular automata and GIS. Int J Geogr Inf Sci 14:131–152. doi: 10.1080/136588100240886 CrossRefGoogle Scholar
  33. Li X, Yeh AG (2001) Calibration of cellular automata by using neural networks for the simulation of complex urban systems. Environ Plan A 33:1445–1462. doi: 10.1068/a33210 CrossRefGoogle Scholar
  34. Li X, Yeh AG-O (2002) Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int J Geogr Inf Sci 16:323–343. doi: 10.1080/13658810210137004 CrossRefGoogle Scholar
  35. Li X, Chen Y, Liu X et al (2011) Concepts, methodologies, and tools of an integrated geographical simulation and optimization system. Int J Geogr Inf Sci 25:633–655. doi: 10.1080/13658816.2010.496370 CrossRefGoogle Scholar
  36. Li X, Lao C, Liu Y et al (2013) Early warning of illegal development for protected areas by integrating cellular automata with neural networks. J Environ Manag 130:106–116.  http://dx.doi.org/10.1016/j.jenvman.2013.08.055 CrossRefGoogle Scholar
  37. Lin Y-P, Chu H-J, Wu C-F, Verburg PH (2011) Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling – a case study. Int J Geogr Inf Sci 25:65–87CrossRefGoogle Scholar
  38. Liu Y, Huang H, Qiu Z, Fan J (2013) Detecting coastline change from satellite images based on beach slope estimation in a tidal flat. Int J Appl Earth Obs Geoinf 23:165–176.  http://dx.doi.org/10.1016/j.jag.2012.12.005 CrossRefGoogle Scholar
  39. Long J, Plant NG (2012) Extended Kalman filter framework for forecasting shoreline evolution. Geophys Res Lett 39(13). doi: 10.1029/2012GL052180
  40. Mantelas L, Prastacos P, Hatzichristos T, Koutsopoulos K (2012) A linguistic approach to model urban growth. Int J Agric Environ Inf Syst 3:35–53. doi: 10.4018/jaeis.2012070103 CrossRefGoogle Scholar
  41. Mertens B, Lambin EF (2000) Land-cover-change trajectories in southern Cameroon. Ann Assoc Am Geogr 90:467–494. doi: 10.1111/0004-5608.00205 CrossRefGoogle Scholar
  42. Openshaw S, Clarke G (1996) Developing spatial analysis functions relevant to GIS environments. In: Fischer M, Scholten HJ, Unwin D (eds) Spatial analytical perspectives on GIS. Taylor and Francis, London, pp 21–37Google Scholar
  43. Osorio AF, Medina R, Gonzalez M (2012) An algorithm for the measurement of shoreline and intertidal beach profiles using video imagery: PSDM. Comput Geosci 46:196–207.  http://dx.doi.org/10.1016/j.cageo.2011.12.008 CrossRefGoogle Scholar
  44. Pijanowski BC (2000) A land transformation model: integrating policy, socioeconomics and environmental drivers using a geographic information system. In: Sanderson J, Harris LD (eds) Landscape ecology: a top down approach. CRC Press, Boca Raton, p 272Google Scholar
  45. Pijanowski BC, Brown DG, Shellito BA, Manik GA (2002) Using neural networks and GIS to forecast land use changes: a land transformation model. Comput Environ Urban Syst 26:553–575.  http://dx.doi.org/10.1016/S0198-9715(01)00015-1 CrossRefGoogle Scholar
  46. Pijanowski BC, Tayyebi A, Delavar MR, Yazdanpanah MJ (2009) Urban Expansion Simulation Using Geospatial Information System and Artificial Neural Networks. Int J Environ Res 3:493–502. doi:  10.22059/ijer.2010.64
  47. Pijanowski BC, Tayyebi A, Doucette J et al (2014) A big data urban growth simulation at a national scale: configuring the GIS and neural network based land transformation model to run in a high performance computing (HPC) environment. Environ Model Softw 51:250–268.  http://dx.doi.org/10.1016/j.envsoft.2013.09.015 CrossRefGoogle Scholar
  48. Qi Y, Wu J (1996) Effects of changing spatial resolution on the results of landscape pattern analysis using spatial autocorrelation indices. Landsc Ecol 11:39–49. doi: 10.1007/BF02087112 CrossRefGoogle Scholar
  49. Río LD, Gracia FJ, Benavente J (2013) Shoreline change patterns in sandy coasts. A case study in {SW} Spain. Geomorphology 196:252–266.  http://dx.doi.org/10.1016/j.geomorph.2012.07.027 CrossRefGoogle Scholar
  50. Santé I, García AM, Miranda D, Crecente R (2010) Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landsc Urban Plan 96:108–122.  http://dx.doi.org/10.1016/j.landurbplan.2010.03.001 CrossRefGoogle Scholar
  51. Shafizadeh Moghadam H, Helbich M (2013) Spatiotemporal urbanization processes in the megacity of Mumbai, India: a Markov chains-cellular automata urban growth model. Appl Geogr 40:140–149.  http://dx.doi.org/10.1016/j.apgeog.2013.01.009 CrossRefGoogle Scholar
  52. Shafizadeh-Moghadam H, Helbich M (2015) Spatiotemporal variability of urban growth factors: a global and local perspective on the megacity of Mumbai. Int J Appl Earth Obs Geoinf 35(Part B):187–198.  http://dx.doi.org/10.1016/j.jag.2014.08.013 CrossRefGoogle Scholar
  53. Tayyebi A, Pijanowski BC, Pekin B (2011) Two rule-based urban growth boundary models applied to the Tehran metropolitan area, Iran. Appl Geogr 31:908–918.  http://dx.doi.org/10.1016/j.apgeog.2011.01.018 CrossRefGoogle Scholar
  54. Tayyebi A, Pijanowski BC, Linderman M, Gratton C (2014a) Comparing three global parametric and local non-parametric models to simulate land use change in diverse areas of the world. Environ Model Softw 59:202–221.  http://dx.doi.org/10.1016/j.envsoft.2014.05.022 CrossRefGoogle Scholar
  55. Tayyebi AH, Tayyebi A, Khanna N (2014b) Assessing uncertainty dimensions in land-use change models: using swap and multiplicative error models for injecting attribute and positional errors in spatial data. Int J Remote Sens 35:149–170. doi: 10.1080/01431161.2013.866293 CrossRefGoogle Scholar
  56. Tiwari MK, Chatterjee C (2010) Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). J Hydrol 382:20–33.  http://dx.doi.org/10.1016/j.jhydrol.2009.12.013 CrossRefGoogle Scholar
  57. Tobler WR (1979) Cellular geography BT – philosophy in geography. In: Olsson G (ed) Gale S. Springer, Dordrecht, pp 379–386Google Scholar
  58. Vaz E (2011) Regional change in the Algarve: a geographic information systems approach. Nova University, LisbonGoogle Scholar
  59. Veldkamp A, Fresco LO (1996) CLUE-CR: an integrated multi-scale model to simulate land use change scenarios in Costa Rica. Ecol Model 91:231–248.  http://dx.doi.org/10.1016/0304-3800(95)00158-1 CrossRefGoogle Scholar
  60. Veloso Gomes F, Taveira Pinto F, Pais-Barbosa J (2005) Rehabilitation study of coastal defense works and artificial sand nourishment at costa da Caparica, Portugal. Coast Eng 2004 1-4:3429–3441CrossRefGoogle Scholar
  61. Wang F (1994) The use of artificial neural networks in a geographical information system for agricultural land-suitability assessment. Environ Plan A 26:265–284. doi: 10.1068/a260265 CrossRefGoogle Scholar
  62. Wang Y, Li S (2011) Simulating multiple class urban land-use/cover changes by RBFN-based CA model. Comput Geosci 37:111–121.  http://dx.doi.org/10.1016/j.cageo.2010.07.006 CrossRefGoogle Scholar
  63. Weng Q (2002) Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J Environ Manag 64:273–284.  http://dx.doi.org/10.1006/jema.2001.0509 CrossRefGoogle Scholar
  64. White R, Engelen G (1993) Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environ Plan A 25:1175–1199. doi: 10.1068/a251175 CrossRefGoogle Scholar
  65. White R, Engelen G (1997) Cellular automata as the basis of integrated dynamic regional modelling. Environ Plann B Plann Des 24:235–246. doi: 10.1068/b240235 CrossRefGoogle Scholar
  66. Wu F (1998) An experiment on the generic polycentricity of urban growth in a cellular automatic city. Environ Plan B Plan Des 25:731–752CrossRefGoogle Scholar
  67. Wu F (1999) GIS-based simulation as an exploratory analysis for space-time processes. J Geogr Syst 1:199–218. doi: 10.1007/s101090050012 CrossRefGoogle Scholar
  68. Wu F, Webster CJ (1998) Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environ Plann B Plann Des 25:103–126. doi: 10.1068/B250103 CrossRefGoogle Scholar
  69. Wu F, Webster CJ (2000) Simulating artificial cities in a GIS environment: urban growth under alternative regulation regimes. Int J Geogr Inf Sci 14:625–648. doi: 10.1080/136588100424945 CrossRefGoogle Scholar
  70. Yeh AG-O, Li X (2006) Errors and uncertainties in urban cellular automata. Comput Environ Urban Syst 30:10–28.  http://dx.doi.org/10.1016/j.compenvurbsys.2004.05.007 CrossRefGoogle Scholar
  71. Yen GO, Li X (2001) A constrained CA model for the simulation and planning of sustainable urban forms by using GIS. Environ Plan B Plan Des 28:733–753. doi: 10.1068/b2740 CrossRefGoogle Scholar
  72. Zadeh LA (1992) Fuzzy logic and the calculus of fuzzy if-then rules. In: [1992] Proceedings of the twenty-second international symposium on multiple-valued logic, pp 480–480Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jorge Rocha
    • 1
  • Francisco Gutierres
    • 2
    Email author
  • Pedro Gomes
    • 3
  • Ana Cláudia Teodoro
    • 4
  1. 1.Institute of Geography and Spatial PlanningUniversidade de LisboaLisboaPortugal
  2. 2.Big Data Analytics UnitEurecat – Technology Centre of CataloniaBarcelonaSpain
  3. 3.Department of Environment and AgricultureNational Statistics InstituteLisbonPortugal
  4. 4.Earth Sciences Institute (ICT) and Department of Geosciences, Environment and Land Planning, Faculty of SciencesUniversity of PortoPortoPortugal

Personalised recommendations