Skip to main content

Large Scale Medical Data Mining for Accurate Diagnosis: A Blueprint

  • Chapter
  • First Online:

Part of the book series: Scalable Computing and Communications ((SCC))

Abstract

Medical care and machine learning are associated together in the current era. For example, machine learning (ML) techniques support the medical diagnosis process/decision making on large scale of diseases. Advanced data mining techniques in diseases information processing context become essential. The present study covered several aspects of large scale knowledge mining for medical and diseases investigation. A genome-wide association study was reported including the interactions and relationships for the Alzheimer disease (AD). In addition, bioinformatics pipeline techniques were implied for matching genetic variations. Moreover, a novel ML approaches to construct a framework for large scale gene-gene interactions were addressed. Particle swam optimization (PSO) based cancer cytology is another discussed pivotal field. An assembly ML Random forest algorithm was mentioned as it was carried out to classify the features that are responsible for Bacterial vaginosis (BV) in vagina microbiome. Karhunen-Loeve transformation assures features finding from various level of ChIP-seq genome dataset. In the current work, some significant comparisons were conducted based on several ML techniques used for diagnosis medical datasets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aenenhaus Arthur, Philippe Cathy, Guillemot Vincent, Cao A. Kim, and Frouin Vincent. 2014. Variable selection for generalized canonical correlation analysis. Biostatistics. 15(3):569–83.

    Google Scholar 

  2. Alon, 2003. Biological networks: the tinkerer as an engineer. Science, 301:1866–1867.

    Google Scholar 

  3. Al-Shahrour Fatema, Minguez Pabel, Vaquerizas M. Jaun, and Dopazo Jaoquin. 2005. BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments. Nucleic Acids Res. 33(Web Server issue): W460–4.

    Google Scholar 

  4. Alexander Stojadinovic, Anton Bilchik, and Smith David. 2013. Clinical decision support and individualized prediction of survival in colon cancer: Bayesian belief network model. Ann Surgery Oncology 20(1):161–74.

    Google Scholar 

  5. Ahn Yoel, Bagrow P. James, and Lehmann Sune. 2011. Link communities reveal multiscale complexity in networks. Nature 20, 466:761–764.

    Google Scholar 

  6. Ashburner Michael, Ball A. Catherine, Blake A. Judith, Botstein David, Butler Heather, and Eppig T. Midori. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Natural. Genetics. 25, 25–29.

    Google Scholar 

  7. Batagelj Valadimir, and Mrvar Andrej. 1998. Pajek—Program for Large Network Analysis. Connections, 21:47–57.

    Google Scholar 

  8. Banks A. Charles, Kong E. Stephen, and Washburn P. Michael. 2012. Affinity purification of protein complexes for analysis by multidimensional protein identification technology. Protein Expression and Purification, 86:2, 105–119.

    Google Scholar 

  9. Bader D. Gray and Hogue W. Christopher. 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC bioinformatics, 4:1.

    Google Scholar 

  10. Bader D. Gray, and Hogu W. Crishtopher. 2003. CWV: An automatedmethod for findingmolecular complexes in large protein interaction networks. BMC Bioinformatics, 4:2.

    Google Scholar 

  11. Breitkreutz Bobby, Stark Chris, and Tyers Mike. 2003. Osprey: a network visualizationsystem. Genome Biology, 4(3):R22.

    Google Scholar 

  12. Crippen Gordan, Havel F. Timothy. 1988. Distance Geometry and Molecular Conformation. New York: Wiley.

    Google Scholar 

  13. Cao A. Kim, Rossouw Debra, Robert-Granié Chiristele, and Besse Philippe. 2008. A sparse PLS for variable selection when integrating omicsdata. Stat Application of Genetic Molecular Biology, 7(1):35.

    Google Scholar 

  14. Cao A. Kim, Martin G. Pascal, Robert-Granié Christele, and Besse Phillippe. 2009. Sparse canonical methods for biological data integration: application to a cross-platform study. BMC Bioinformatics.10:34.

    Google Scholar 

  15. Chung Dongjun, Chun Hyonho and KelesSunduz. Sparse Partial Least Squares (SPLS) Regression and Classification.

    Google Scholar 

  16. Zou Dong, Ma Lina, Yu Jun, and Zhang Zhang, 2015. Biological Databases for Human Research. Genomics Proteomics Bioinformatics, 13,55–63.

    Google Scholar 

  17. Chuang Han, Lee Eunjun, Liu Yu, and Ideker Trey. 2007. Network-based classification of breast cancer metastasis. Molecular System Biology, 3:140.

    Google Scholar 

  18. Chintapalli R. Venkateswara, Wang Jing, and Dow A. Julian. 2007. Using FlyAtlas to identify better. Drosophila melanogaster models of human disease. Natural Genetic. 39:7, 15–20.

    Google Scholar 

  19. Chatr-Aryamontri Andrew, Breitkreutz J. Bobby, and Heinicke Sven. 2013. The BioGRID interaction database: 2013 update. Nucleic Acids Research, 41:1, D816–D823.

    Google Scholar 

  20. Chen S. Ming, Han Jaiwei, and Yu S. Philip. 1996. Data mining: An overview from a database perspective. IEEE Trans. Knowledge and Data Engineering, 8:866–883.

    Google Scholar 

  21. Chopra Pankaj, Kang Jaewoo, Yang Jiang, and Lee M. Goo. 2008. Microarray data mining using landmark gene-guided clustering. BMC Bioinformatics, 9:92.

    Google Scholar 

  22. Costa G. Ivan, Krause Roland, Opitz Lennart, and Schliep Alexnder. 2007. Semi-supervised learning for the identification of syn-expressed genes from fused microarray and in situ image data. BMC Bioinformatics, 8:10, S3.

    Google Scholar 

  23. Croft David, Mundo F. Antonio, Haw Robin, Milacic Marija, Weiser Joel, and Wu Guanming. 2014. The Reactome pathway knowledgebase. Nucleic Acids Res. 42:D472–7.

    Google Scholar 

  24. Cserháti Tibor, Kósa Agnes, and Balogh Sandor. 1998. Comparison of partial least-square method and canonical correlation analysis in a quantitative structure-retention relationship study. Journal of Biochemistry Biophysics Methods. 36(2–3):131–141.

    Google Scholar 

  25. D’andrade Roy. 1978. U-Statistic Hierarchical Clustering. Psychometrika. 4:58–67.

    Google Scholar 

  26. Dahlquist D. Kam. 2004. Using GenMAPP and MAPPFinder to view microarray data on biological pathways and identify global trends in the data. Bioinformatics, Chap. 7, Unit 75.

    Google Scholar 

  27. Fern X. Zhang Fern and Brodley E. Carla. 2003. Solving cluster ensemble problems by bipartite graph partitioning. In Proceedings of the 21st International Conference on Machine Learning: 2003; Banff, Alberta. New York, NY: ACM Press; 182–189.

    Google Scholar 

  28. Fruchterman M. Thomas, Reingold M. Edward. 1991. Graph Drawing by Force-Directed Placement. Software. Practice and Experience, 21:1129–1164.

    Google Scholar 

  29. Frey J. Brendan, and Dueck Delbert. 2007. Clustering by passing messages between data points. Science, 315(5814):972–976.

    Google Scholar 

  30. Corder, E.H., A.M. Saunders, W.J. Strittmatter, D.E. Schmechel, P.C. Gaskell, GWet Small, A.D. Roses, J.L. Haines, and Margaret A. Pericak-Vance. “Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families.” Science 261, no. 5123 (1993):921–923.

    Google Scholar 

  31. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991 Feb 21; 349(6311):704–6.

    Google Scholar 

  32. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013; 45(12):1452–8.

    Google Scholar 

  33. Younghee Lee, Haiquan Li, Jianrong Li, Ellen Rebman, Ikbel Achour, Kelly E Regan, Eric R Gamazon, James L Chen, Xinan Holly Yang, Nancy J Cox, and Yves A Lussier, Network models of genome-wide association studies uncover the topological centrality of protein interactions in complex diseases, J Am Med Inform Assoc. 2013 Jul; 20(4): pp. 619–629. Published online 2013 Jan 25. doi:10.1136/amiajnl-2012-001519.

  34. N. Akula, A. Baranova, D. Seto, Jeffrey, M.A. Nalls, A. Singleton, L. Ferrucci, T. Tanaka, S. Bandinelli, Y.S. Cho, Y.J. Kim, Jong-Young Lee, Bok-Ghee Han, J. McMahon, A Network-Based Approach to Prioritize Results from Genome-Wide Association Studies, Published: September 6, 2011.

    Google Scholar 

  35. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991 Feb 21; 349(6311):704–6.

    Google Scholar 

  36. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T, Mar L. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature. 1995 Aug 31; 376(6543):775–8.

    Google Scholar 

  37. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE: Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 2007, 39:17–23.

    Google Scholar 

  38. Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, Lannfelt L. A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N–terminus of β–amyloid. Nature genetics. 1992 Aug 1; 1(5):345–7.

    Google Scholar 

  39. Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH, Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer, Am J Hum Genet. 2001 Jul; 69 (1): pp. 138–47. Epub 2001 Jun 11.

    Google Scholar 

  40. Kononen J, Bubendorf L, Kallionimeni A, Bärlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallionimeni OP. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nature medicine. 1998 Jul 1; 4(7):844–7.

    Google Scholar 

  41. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000; 406(6797):747–52. doi:10.1038/35021093.

  42. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J ClinOncol. 2009; 27(8):1160–1167. doi:10.1200/JCO.2008.18.1370.

  43. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. The Lancet. 2005; 365(9460):671–9. doi:10.1016/S0140-6736(05)17947-1.

  44. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012; 486(7403):346–52. doi:10.1038/nature10983.

  45. David J. Dittman, Taghi M. Khoshgoftaar, Amri Napolitano, Selecting the Appropriate Ensemble Learning Approach for Balanced Bioinformatics Data, Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference, pp. 329–334.

    Google Scholar 

  46. K. Gao, T. Khoshgoftaar, R. Wald, Combining Feature Selection and Ensemble Learning for Software Quality Estimation, Proceedings of the Twenty-Seventh International Florida Artificial Intelligence Research Society Conference, pp. 47–52.

    Google Scholar 

  47. Heim S, Mitelman F. Cancer cytogenetics: chromosomal and molecular genetic aberrations of tumor cells. John Wiley & Sons; 2015 Aug 17.

    Google Scholar 

  48. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature medicine. 1995 Jan 1; 1(1):27–30.

    Google Scholar 

  49. Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabé RR, et al. International network of cancer genome projects. Nature. 2010; 464(7291):993–8. doi:10.1038/nature08987.

  50. Qian Wang, Jiaxing Zhang, Sen Song, Zheng Zhang, Attentional Neural Network: Feature Selection Using Cognitive Feedback, arXiv:1411.5140v1[cs.CV] 19 Nov 2014.

  51. Dean J, Ghemawat S. MapReduce: simplified data processing on large cluster. Communications of the ACM 2008; 51(1): 107–113.

    Google Scholar 

  52. IDC, The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the Far East, www.emc.com/leadership/digital-universe/index.htm [last accessed 20 November 2014].

  53. Chen C.L.P, Zhang C.Y. Data-intensive applications, challenges, techniques and technologies: a survey on big data, Inform. Sci, doi:10.1016/j.ins.2014.01.015.

  54. Chen M, Mao S, Liu Y. Big data survey. Mobile Networks and Applications 2014; 19(2): 171–209.

    Google Scholar 

  55. Chen M, Mao S, Liu Y. Big data: a survey. Mobile Networks and Applications. 2014 Apr 1; 19(2):171–209.

    Google Scholar 

  56. Jake Luo, Min Wu, Deepika Gopukumar and Yiqing Zhao, Big Data Application in Biomedical Research and Health Care: A Literature Review, libertas academia, freedom to research, published on 19 Jan 2016. doi:10.4137/BII.S31559.

  57. Dr. Xin Deng, Dr. Donghui Wu, Big Data Analytic Technology for Bioinformatics and Health Informatics, Call for Papers: Special Session at 2015 IEEE Symposium on Computational Intelligence in healthcare and e-health (IEEE CICARE 2015).

    Google Scholar 

  58. Emdad Khan, Addressing Bioinformatics Big Data Problems using Natural Language Processing: Help Advancing Scientific Discovery and Biomedical Research, Modern Computer Applications in Science and Education, pp. 221–228.

    Google Scholar 

  59. Cambridge Healthtech Institute’s Eighth Annual, Integrated Informatics Driving Translational Research & Precision Medicine, March 7–9, 2016, Moscone North Convention Center, San Francisco, CA, Part of the 23rd International Molecular Medicine Tri-Conference.

    Google Scholar 

  60. Tonia C. Carter and Max M. He, Challenges of Identifying Clinically Actionable Genetic Variants for Precision Medicine, Journal of Healthcare Engineering Volume 2016 (2016), Article ID 3617572.

    Google Scholar 

  61. Coiera E. Guide to health informatics. CRC press; 2015 Mar 6.

    Google Scholar 

  62. O’donoghue, John; Herbert, John (2012). “Data management within mHealth environments: Patient sensors, mobile devices, and databases”. Journal of Data and Information Quality (JDIQ). 4 (1):5.

    Google Scholar 

  63. Mettler T, Raptis DA (2012). “What constitutes the field of health information systems? Fostering a systematic framework and research agenda”. Health Informatics Journal. 18 (2): 147–56. doi:10.1177/1460458212452496. PMID 22733682.

  64. Chen J, Qian F, Yan W, Shen B (2013) Translational biomedical informatics in the cloud: present and future. BioMed Res Int 2013, 8.

    Google Scholar 

  65. Brown-Liburd H, Issa H, Lombardi D. Behavioral implications of Big Data’s impact on audit judgment and decision making and future research directions. Accounting Horizons. 2015 Jun; 29(2):451–68.

    Google Scholar 

  66. Adibi, Sasan, ed. (February 19, 2015). Mobile Health: A Technology Road Map. Springer. ISBN 978-3-319-12817-7.

    Google Scholar 

  67. Sohn H, Farrar CR, Hemez FM, Shunk DD, Stinemates DW, Nadler BR, Czarnecki JJ. A review of structural health monitoring literature: 1996–2001. Los Alamos National Laboratory, USA. 2003.

    Google Scholar 

  68. Frank J, Di Ruggiero E, Mowat D, Medlar B. Developing knowledge translation capacity in public health. Canadian Journal of Public Health. 2007 Jul; 98(4).

    Google Scholar 

  69. Schatz B, Marsh C, Patrick K, et al. Research challenges in measuring data for population health to enable predictive modeling for improving healthcare. ACM SIGHIT Rec. 2012; 2:36–41.

    Google Scholar 

  70. Jiang Y, Liao Q, Cheng Q, et al. Designing and evaluating a clustering system for organizing and integrating patient drug outcomes in personal health messages. AMIA Annu Symp Proc. 2012; 2012: 417–426.

    Google Scholar 

  71. Becker T, Curry E, Jentzsch A, Palmetshofer W. New Horizons for a Data-Driven Economy: Roadmaps and Action Plans for Technology, Businesses, Policy, and Society. In New Horizons for a Data-Driven Economy 2016 (pp. 277–291). Springer International Publishing.

    Google Scholar 

  72. Magoulas, Roger; Lorica, Ben (February 2009). “Introduction to Big Data”. Release 2.0. Sebastopol CA: O’Reilly Media (11).

    Google Scholar 

  73. Snijders, C.; Matzat, U.; Reips, U.-D. (2012). “‘Big Data’: Big gaps of knowledge in the field of Internet”. International Journal of Internet Science. 7: 1–5.

    Google Scholar 

  74. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27:1047–1053.

    Google Scholar 

  75. Centers for Disease Control and Prevention. Estimates of diabetes and its burden in the United States. National Diabetes Statistics Report. Atlanta, GA: US Department of Health and Human Services. 2014.

    Google Scholar 

  76. Lindstro M. J, Louheranta A, Mannelin M, et al. The Finnish Diabetes Pre-vention Study (DPS): Lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care 2003; 26:3230–3236. 20.

    Google Scholar 

  77. Li G, Zhang P, Wang J, et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: A 20-year follow-up study. Lancet 2008; 371:1783–1789. 21.

    Google Scholar 

  78. Ramachandran A, Snehalatha C, Mary S, et al. The Indian Diabetes Pre-vention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 2006; 49:289–297.

    Google Scholar 

  79. Kahn HS, Cheng YJ, Thompson TJ, et al. Two risk-scoring systems for predicting incident diabetes mellitus in US adults age 45 to 64 years. Ann Intern Med 2009; 150:741–751. 24.

    Google Scholar 

  80. Stern MP, Williams K, Haffner SM. Identification of persons at high risk for type 2 diabetes mellitus: Do we need the oral glucose tolerance test? Ann Intern Med 2002; 136:575–581. 25.

    Google Scholar 

  81. Chen L, Magliano DJ, Balkau B, et al. AUSDRISK: An Australian Type 2 Diabetes Risk Assessment Tool based on demographic, lifestyle and simple anthropometric measures. Med J Aust 2010; 192:197–202. 26.

    Google Scholar 

  82. Lindstro M J, Tuomilehto J. The diabetes risk score: A practical tool to predict type 2 diabetes risk. Diabetes Care 2003; 26:725–731.

    Google Scholar 

  83. Groves P, Kayyali B, Knott D, et al. The ‘big data’ revolution in healthcare. Boston: McKinsey Quarterly. 2013.

    Google Scholar 

  84. Bellman RE. The theory of dynamic programming. Rand Corporation technical report, 1957.

    Google Scholar 

  85. van Regenmortel MH, Fauquet CM, Bishop DH, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB. Virus taxonomy: classification and nomenclature of viruses. Seventh report of the International Committee on Taxonomy of Viruses. Academic Press; 2000.

    Google Scholar 

  86. National Institutes of Health. Precision medicine initiative cohort program, 2015.

    Google Scholar 

  87. National Institutes of Health. Precision Medicine Initiative Cohort Program. 2016.

    Google Scholar 

  88. Francis S. Collins, M.D., Ph.D., and Harold Varmus, M.D, A New Initiative on Precision Medicine, the new England journals of medicine, N England J Med 2015; 372:793–795 February 26, 2015 doi:10.1056/NEJMp1500523.

  89. Seripa D, Panza F, Daragjati J, Paroni G, Pilotto A. Measuring pharmacogenetics in special groups: geriatrics. Expert opinion on drug metabolism & toxicology. 2015 Jul 3; 11(7):1073–88.

    Google Scholar 

  90. Siobhan Dumbreck, Angela Flynn, Moray Nairn, Martin Wilson, Shaun Treweek, Stewart W Mercer, Phil Alderson, Alex Thompson, Katherine Payne, Guthrie, Drug-disease and drug-drug interactions: systematic examination of recommendations in 12 UK national clinical guidelines, BMJ 2015; 350.

    Google Scholar 

  91. Caterina Palleria, Antonello Di Paolo, Chiara Giofrè, Chiara Caglioti, Giacomo Leuzzi, Antonio Siniscalchi, Giovambattista De Sarro, and Luca Gallelli, Pharmacokinetic drug-drug interaction and their implication in clinical management, journal of research in medical science, J Res Med Sci. 2013 Jul; 18(7): 601–610.

    Google Scholar 

  92. Becker ML, Kallewaard M, Caspers PW, Visser LE, Leufkens HG, Stricker BH. Hospitalisations and emergency department visits due to drug-drug interactions: a literature review. Pharmacoepidemiol Drug Saf. 2007; 16(6):641–51.

    Google Scholar 

  93. Daly AK. Pharmacogenomics of adverse drug reactions. Genome med. 2013; 5(1):5.

    Google Scholar 

  94. Verma RP, Hansch C, QSAR modeling of taxane analogues against colon cancer, Eur J Med Chem. 2010 Apr; 45(4):1470–7. doi:10.1016/j.ejmech.2009.12.054. Epub 2010 Jan 13.

  95. Fauzee NJS, Dong Z, Wang YI. Taxanes: promising anti-cancer drugs. Asian Pac J Cancer Prev. 2011; 12:837–51.

    Google Scholar 

  96. Song L, Chen QH, She XE, Chen XG, Wang FP. Conversional synthesis and cytotoxic evaluation of novel taxoid analogs. J Asian Nat Prod Res. 2011; 13(9):787–98.

    Google Scholar 

  97. Niko Beerenwinke, Martin Däumer, Mark Oette, Klaus Korn, Daniel Hoffmann, Rolf Kaiser, Thomas Lengauer, Joachim Selbig, and Hauke Walter, Geno2pheno: estimating phenotypic drug resistance from HIV-1 genotypes, Nucleic Acids Res. 2003 Jul 1; 31(13):3850–3855. PMCID: PMC168981.

    Google Scholar 

  98. Soo-Yon Rhee, Jonathan Taylor, Gauhar Wadhera, Asa Ben-Hur, Douglas L. Brutlag, Robert W. Shafer, Genotypic predictors of human immunodeficiency virus type 1 drug resistance, vol. 103 no. 46, Soo-Yon Rhee, 17355–17360.

    Google Scholar 

  99. Kelly T, Yang W, Chen C-S, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond). 2008; 32:1431–7.

    Google Scholar 

  100. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011– 2012. JAMA. 2014; 311:806–14.

    Google Scholar 

  101. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci. 2011; 108(Supplement 1):4680–687.

    Google Scholar 

  102. Kamal S, Ripon SH, Dey N, Ashour AS, Santhi V. A MapReduce approach to diminish imbalance parameters for big deoxyribonucleic acid dataset. Computer methods and programs in biomedicine. 2016 Jul 31; 131:191–206.

    Google Scholar 

  103. Kamal S, Dey N, Nimmy SF, Ripon SH, Ali NY, Ashour AS, Karaa WB, Nguyen GN, Shi F. Evolutionary framework for coding area selection from cancer data. Neural Computing and Applications.:1–23.

    Google Scholar 

  104. Acharjee S, Dey N, Samanta S, Das D, Roy R, Chakraborty S, Chaudhuri SS. Electrocardiograph Signal Compression Using Ant Weight Lifting Algorithm for Tele-Monitoring. Journal of Medical Imaging and Health Informatics. 2016 Feb 1; 6(1):244–51.

    Google Scholar 

  105. Dey N, Das P, Chaudhuri SS, Das A. Feature analysis for the blind-watermarked electroencephalogram signal in wireless telemonitoring using Alattar’s method. In Proceedings of the Fifth International Conference on Security of Information and Networks 2012 Oct 25 (pp. 87–94).

    Google Scholar 

  106. Cinque M, Coronato A, Testa A. Dependable services for mobile health monitoring systems. International Journal of Ambient Computing and Intelligence (IJACI). 2012 Jan 1; 4(1):1–5.

    Google Scholar 

  107. Van Hoof J, Wouters EJ, Marston HR, Vanrumste B, Overdiep RA. Ambient assisted living and care in The Netherlands: the voice of the user. Pervasive and Ubiquitous Technology Innovations for Ambient Intelligence Environments. 2012 Sep 30:205.

    Google Scholar 

  108. Odella F. Technology Studies and the Sociological Debate on Monitoring of Social Interactions. International Journal of Ambient Computing and Intelligence (IJACI). 2016 Jan 1; 7(1):1–26.

    Google Scholar 

  109. Tapia DI, Corchado JM. An ambient intelligence based multi-agent system for Alzheimer health care. International Journal of Ambient Computing and Intelligence (IJACI). 2009 Jan 1; 1(1):15–26.

    Google Scholar 

  110. Favela J, Tentori M, Segura D, Berzunza G. Adaptive awareness of hospital patient information through multiple sentient displays. International Journal of Ambient Computing and Intelligence (IJACI). 2009 Jan 1; 1(1):27–38.

    Google Scholar 

  111. Baumgarten M, Mulvenna M, Rooney N, Reid J. Keyword-Based Sentiment Mining using Twitter. International Journal of Ambient Computing and Intelligence. 2013; 5(2):56–69.

    Google Scholar 

  112. Odella F. Technology Studies and the Sociological Debate on Monitoring of Social Interactions. International Journal of Ambient Computing and Intelligence (IJACI). 2016 Jan 1; 7(1):1–26.

    Google Scholar 

  113. Araki T, Ikeda N, Dey N, Chakraborty S, Saba L, Kumar D, Godia EC, Jiang X, Gupta A, Radeva P, Laird JR. A comparative approach of four different image registration techniques for quantitative assessment of coronary artery calcium lesions using intravascular ultrasound. Computer methods and programs in biomedicine. 2015 Feb 28; 118(2):158–72.

    Google Scholar 

  114. Araki T, Ikeda N, Dey N, Acharjee S, Molinari F, Saba L, Godia EC, Nicolaides A, Suri JS. Shape-based approach for coronary calcium lesion volume measurement on intravascular ultrasound imaging and its association with carotid intima-media thickness. Journal of Ultrasound in Medicine. 2015 Mar 1; 34(3):469–82.

    Google Scholar 

  115. Roy P, Goswami S, Chakraborty S, Azar AT, Dey N. Image segmentation using rough set theory: a review. International Journal of Rough Sets and Data Analysis (IJRSDA). 2014 Jul 1; 1(2):62–74.

    Google Scholar 

  116. Dey N, Ashour AS, Chakraborty S, Samanta S, Sifaki-Pistolla D, Ashour AS, Le DN, Nguyen GN. Healthy and Unhealthy Rat Hippocampus Cells Classification: A Neural Based Automated System for Alzheimer Disease Classification. Journal of Advanced Microscopy Research. 2016 Jun 1; 11(1):1–0.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilanjan Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sarwar Kamal, M., Dey, N., Ashour, A.S. (2017). Large Scale Medical Data Mining for Accurate Diagnosis: A Blueprint. In: Khan, S., Zomaya, A., Abbas, A. (eds) Handbook of Large-Scale Distributed Computing in Smart Healthcare. Scalable Computing and Communications. Springer, Cham. https://doi.org/10.1007/978-3-319-58280-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58280-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58279-5

  • Online ISBN: 978-3-319-58280-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics