Advertisement

3-Dimensional Device Fabrication: A Bio-Based Materials Approach

  • Sujata K. BhatiaEmail author
  • Krish W. Ramadurai
Chapter
Part of the SpringerBriefs in Materials book series (BRIEFSMATERIALS)

Abstract

In the previous chapter, we defined the evolution and advancement of 3-dimensional printing technologies and the transformation of these devices from rather primitive machines to highly adaptable modular apparatuses.

References

  1. ASTM International. (2014). ASTM D638-14 standard test method for tensile properties of plastics. Retrieved from https://doi.org/10.1520/D0638-14
  2. ASTM International. (2015). ASTM D695-15 standard test method for compressive properties of rigid plastics. Retrieved from https://doi.org/10.1520/D0695-15
  3. Azimi, P., Zhao, D., Pouzet, C., Crain, N. E., & Stephens, B. (2016). Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environmental Science and Technology, 50(3), 1260–1268.CrossRefGoogle Scholar
  4. Bandyopadhyay, A., Bose, S., & Das, S. (2015). 3D printing of biomaterials. MRS Bulletin, 40(02), 108–115.CrossRefGoogle Scholar
  5. Cherykhunthod, W., Seadan, M., & Suttiruengwong, S. (2015). Effect of peroxide and chain extender on mechanical properties and morphology of poly (butylene succinate)/poly (lactic acid) blends. In IOP Conference Series: Materials Science and Engineering (Vol. 87, No. 1, p. 012073). UK: IOP Publishing.Google Scholar
  6. Chia, H. N., & Wu, B. M. (2015). Recent advances in 3D printing of biomaterials. Journal of biological engineering, 9(1), 1.CrossRefGoogle Scholar
  7. Corneillie, S., & Smet, M. (2015). PLA architectures: the role of branching. Polymer Chemistry, 6(6), 850–867.CrossRefGoogle Scholar
  8. Davachi, S. M., & Kaffashi, B. (2015). Polylactic acid in medicine. Polymer-Plastics Technology and Engineering, 54(9), 944–967.CrossRefGoogle Scholar
  9. DeWolfe, A. (2010). How to perform an ASTM D790 plastic flexural 3 point bend test. Retrieved February 13, 2017, from http://www.admet.com/how-to-perform-an-astm-d790-plastic-flexural-3-point-bend-test/
  10. Drummer, D., Cifuentes-Cuéllar, S., & Rietzel, D. (2012). Suitability of PLA/TCP for fused deposition modeling. Rapid Prototyping Journal, 18(6), 500–507.CrossRefGoogle Scholar
  11. Hamad, K., Kaseem, M., Yang, H. W., Deri, F., & Ko, Y. G. (2015). Properties and medical applications of polylactic acid: A review. Express Polymer Letters, 9(5), 435–455.CrossRefGoogle Scholar
  12. Hodsden, S. (2015, October 14). Abbott’s Fully Resorbable Heart Stent Performs Well In Trials. Retrieved January 10, 2017, from http://www.meddeviceonline.com/doc/abbott-s-fully-resorbable-heart-stent-performs-well-in-trials-0001
  13. Huneault, M. A., & Li, H. (2007). Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer, 48(1), 270–280.CrossRefGoogle Scholar
  14. Kondor, S., Grant, C. G., Liacouras, P., Schmid, M. J. R., Parsons, L. M., Rastogi, V K., … & Macedonia, C. (2013). On demand additive manufacturing of a basic surgical kit. Journal of Medical Devices, 7(3), 030916.Google Scholar
  15. Kreiger, M., & Pearce, J. M. (2013). Environmental life cycle analysis of distributed three-dimensional printing and conventional manufacturing of polymer products. ACS Sustainable Chemistry & Engineering, 1(12), 1511–1519.CrossRefGoogle Scholar
  16. Langer, B., & Grellmann, W. (2014). Izod impact strength-introduction. In Polymer solids and polymer melts–mechanical and thermomechanical properties of polymers (pp. 251–251). Berlin, Heidelberg: Springer.Google Scholar
  17. Lithner, D., Nordensvan, I., & Dave, G. (2012). Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile–butadiene–styrene, and epoxy to Daphnia magna. Environmental Science and Pollution Research, 19(5), 1763–1772.CrossRefGoogle Scholar
  18. Li, J., He, Y., & Inoue, Y. (2003). Thermal and mechanical properties of biodegradable blends of poly (L-lactic acid) and lignin. Polymer International, 52(6), 949–955.Google Scholar
  19. Mathew, A. P., & Oksman, K. (2004). Mechancial Properties of Biodegradable Composites from Poly Lactic Acid (PLA and Microcrystalline Cellulose (MCC). Wiley Interscience, 2014–2025.Google Scholar
  20. Mathew, A. P., Oksman, K., & Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97(5), 2014–2025.CrossRefGoogle Scholar
  21. Mekonnen, T., Mussone, P., Khalil, H., & Bressler, D. (2013). Progress in bio-based plastics and plasticizing modifications. Journal of Materials Chemistry A, 1(43), 13379–13398.CrossRefGoogle Scholar
  22. Modjarrad, K., & Ebnesajjad, S. (Eds.). (2013). Handbook of Polymer Applications in Medicine and Medical Devices. Amterdam: Elsevier.Google Scholar
  23. Mohanty, A. K., Wibowo, A., Misra, M., & Drzal, L. T. (2003). Development of renewable resource–based cellulose acetate bioplastic: Effect of process engineering on the performance of cellulosic plastics. Polymer Engineering & Science, 43(5), 1151–1161.CrossRefGoogle Scholar
  24. Neches, R. Y., Flynn, K. J., Zaman, L., Tung, E., & Pudlo, N. (2014). On the intrinsic sterility of 3D printing (No. e542v1). PeerJ PrePrints.Google Scholar
  25. Okubo, K., Fujii, T., & Thostenson, E. T. (2009). Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Composites Part A: Applied Science and Manufacturing; 40, 469–475.Google Scholar
  26. Oyama, H. T. (2009). Super-tough poly (lactic acid) materials: Reactive blending with ethylene copolymer. Polymer, 50(3), 747–751.CrossRefGoogle Scholar
  27. Pawar, R., U Tekale, S., U Shisodia, S., T Totre, J., & J Domb, A. (2014). Biomedical applications of poly (lactic acid). Recent Patents on Regenerative Medicine, 4(1), 40–51.Google Scholar
  28. Pilla, S. (Ed.). (2011). Handbook of bioplastics and biocomposites engineering applications (Vol. 81). John Wiley & Sons, New Jersey.Google Scholar
  29. Ramot, Y., Zada, M. H., Domb, A. J., & Nyska, A. (2016). Biocompatibility and safety of PLA and its copolymers. Advanced drug delivery reviews.Google Scholar
  30. Rankin, T. M., Giovinco, N. A., Cucher, D. J., Watts, G., Hurwitz, B., & Armstrong, D. G. (2014). Three-dimensional printing surgical instruments: are we there yet? Journal of Surgical Research, 189(2), 193–197.CrossRefGoogle Scholar
  31. Saeidlou, S., Huneault, M. A., Li, H., & Park, C. B. (2014). Poly (lactic acid) stereocomplex formation: Application to PLA rheological property modification. Journal of Applied Polymer Science, 131(22).Google Scholar
  32. Shi, X., Zhang, G., Phuong, T. V., & Lazzeri, A. (2015). Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly (lactic acid). Molecules, 20(1), 1579–1593.CrossRefGoogle Scholar
  33. Shih, Y. F., & Huang, C. C. (2011). Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. Journal of Polymer Research, 18(6), 2335–2340.CrossRefGoogle Scholar
  34. Stephens, B., Azimi, P., El Orch, Z., & Ramos, T. (2013). Ultrafine particle emissions from desktop 3D printers. Atmospheric Environment, 79, 334–339.CrossRefGoogle Scholar
  35. Storz, H., & Vorlop, K. D. (2013). Bio-based plastics: status, challenges and trends. Applied Agriculture Forestry Research, 63, 321–332.Google Scholar
  36. Ströck, M. (2006). Allotropes of Carbon [Digital image]. Retrieved from https://commons.wikimedia.org/wiki/File%3AEight_Allotropes_of_Carbon.png
  37. Sudesh, K., & Iwata, T. (2008). Sustainability of bio-based and biodegradable plastics. CLEAN–Soil, Air, Water, 36(5–6), 433–442.CrossRefGoogle Scholar
  38. Tabi, T., Sajó, I. E., Szabó, F., Luyt, A. S., & Kovács, J. G. (2010). Crystalline structure of annealed polylactic acid and its relation to processing. Express Polymer Letters, 4(10), 659–668.CrossRefGoogle Scholar
  39. Thielen, M. (2012). Bioplastics: basics, applications, markets. Mönchengladbach: Polymedia Publisher.Google Scholar
  40. Tokoro, R., Vu, D. M., Okubo, K., Tanaka, T., Fujii, T., & Fujiura, T. (2008). How to improve mechanical properties of polylactic acid with bamboo fibers. Journal of Materials Science, 43(2), 775–787.Google Scholar
  41. Van Wijk, A. J. M., & Van Wijk, I. (2015). 3D printing with biomaterials: Towards a sustainable and circular economy. IOS press, Amsterdam.Google Scholar
  42. Xiao, L., Wang, B., Yang, G., & Gauthier, M. (2012). Poly (lactic acid)-based biomaterials: synthesis, modification and applications (pp. 247–282). Rijeka: INTECH Open Access Publisher.Google Scholar
  43. Zeng, J. B., Li, K. A., & Du, A. K. (2015). Compatibilization strategies in poly (lactic acid)-based blends. Rsc Advances, 5(41), 32546–32565.CrossRefGoogle Scholar
  44. Zhai, W., Ko, Y., Zhu, W., Wong, A., & Park, C. B. (2009). A study of the crystallization, melting, and foaming behaviors of polylactic acid in compressed CO2. International Journal of Molecular Sciences, 10(12), 5381–5397.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.John F. Kennedy School of GovernmentHarvard UniversityCambridgeUSA
  2. 2.Chemical and Biomolecular EngineeringUniversity of DelawareNewarkUSA
  3. 3.John F. Kennedy School of Government, Faculty of Arts and SciencesHarvard UniversityCambridgeUSA

Personalised recommendations