An Optimal Deployment of Readers for RFID Network Planning Using NSGA-II

  • Abdelkader RaghibEmail author
  • Badr Abou El Majd
  • Brahim Aghezzaf
Part of the Operations Research/Computer Science Interfaces Series book series (ORCS, volume 62)


Radio frequency identification (RFID) is an automated data collection technology with the aim to facilitate data acquisition and storage without human intervention. RFID process depends on radio-frequency waves to transfer data between a reader and an electronic tag attached to an item, in order to identify objects or persons, which allows an automated traceability. The deployment of RFID readers is an important component in RFID system, and plays a key role in RFID Network Planning (RNP). Therefore, in order to optimize the deployment of RFID reader problem, we propose a new approach based on multi-level strategy using as main objectives the coverage, the number of deployed readers and the interference. In this way, Non-dominated Sorting Genetic algorithm II (NSGA-II) is adopted in order to minimize the total quantity of readers required to identify all tags in a given area. The proposed multi-level approach based on NSGA-II algorithm has a several attractive features which makes it ideal for our research and the simulation results show its effectiveness and performance.


NSGA-II RFID RFID network planning Deployment Multi-objective problem Optimization 


  1. 1.
    J.M. Arroyo, F.J. Fernández, Application of a genetic algorithm to n-K power system security assessment. Int. J. Electr. Power Energy Syst. 49, 114–121 (2013). doi:10.1016/j.ijepes.2012.12.011CrossRefGoogle Scholar
  2. 2.
    O. Botero, H. Chaouchi, RFID network topology design based on Genetic Algorithms, in 2011 IEEE International Conference on RFID-Technologies and Applications (RFID-TA) (2011), pp. 300–305Google Scholar
  3. 3.
    T. Brodmeier, E. Pretsch, Application of genetic algorithms in molecular modeling. J. Comput. Chem. 15, 588–595 (1994). doi:10.1002/jcc.540150604CrossRefGoogle Scholar
  4. 4.
    H. Chen, Y. Zhu, K. Hu, Multi-colony bacteria foraging optimization with cell-to-cell communication for RFID network planning. Appl. Soft Comput. 10, 539–547 (2010). doi:10.1016/j.asoc.2009.08.023CrossRefGoogle Scholar
  5. 5.
    H. Chen, Y. Zhu, K. Hu, T. Ku, RFID network planning using a multi-swarm optimizer. J. Netw. Comput. Appl. 34, 888–901 (2011). doi:10.1016/j.jnca.2010.04.004CrossRefGoogle Scholar
  6. 6.
    H. Chen, Y. Zhu, L. Ma, B. Niu, Multiobjective RFID network optimization using multiobjective evolutionary and swarm intelligence approaches. Math. Probl. Eng. 2014, e961412 (2014). doi:10.1155/2014/961412Google Scholar
  7. 7.
    K. Deb, D. Kalyanmoy, Multi-Objective Optimization Using Evolutionary Algorithms (Wiley, New York, NY, 2001)Google Scholar
  8. 8.
    K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002). doi:10.1109/4235.996017CrossRefGoogle Scholar
  9. 9.
    Y.-J. Gong, M. Shen, J. Zhang, et al., Optimizing RFID network planning by using a particle swarm optimization algorithm with redundant reader elimination. IEEE Trans. Ind. Inf. 8, 900–912 (2012). doi:10.1109/TII.2012.2205390CrossRefGoogle Scholar
  10. 10.
    C.-C. Hsu, P.-C. Yuan, The design and implementation of an intelligent deployment system for RFID readers. Expert Syst. Appl. 38, 10506–10517 (2011). doi:10.1016/j.eswa.2011.02.109CrossRefGoogle Scholar
  11. 11.
    S. Lu, S. Yu, A fuzzy k-coverage approach for RFID network planning using plant growth simulation algorithm. J. Netw. Comput. Appl. 39, 280–291 (2014). doi:10.1016/j.jnca.2013.07.015CrossRefGoogle Scholar
  12. 12.
    L. Ma, H. Chen, K. Hu, et al., Hierarchical artificial bee colony algorithm for RFID network planning optimization, hierarchical artificial bee colony algorithm for RFID network planning optimization. Sci. World J. 2014, e941532 (2014). doi:10.1155/2014/941532Google Scholar
  13. 13.
    L. Ma, K. Hu, Y. Zhu, H. Chen, Cooperative artificial bee colony algorithm for multi-objective RFID network planning. J. Netw. Comput. Appl. 42, 143–162 (2014). doi:10.1016/j.jnca.2014.02.012CrossRefGoogle Scholar
  14. 14.
    A.P. McCabe, Constrained optimization of the shape of a wave energy collector by genetic algorithm. Renew. Energy 51, 274–284 (2013). doi:10.1016/j.renene.2012.09.054CrossRefGoogle Scholar
  15. 15.
    S. Wang, M. Liu, A genetic algorithm for two-stage no-wait hybrid flow shop scheduling problem. Comput. Oper. Res. 40, 1064–1075 (2013). doi:10.1016/j.cor.2012.10.015CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Abdelkader Raghib
    • 1
    Email author
  • Badr Abou El Majd
    • 2
  • Brahim Aghezzaf
    • 1
  1. 1.LIMSAD Laboratory, Faculty of Sciences Ain ChockHassal II University of CasablancaCasablancaMorocco
  2. 2.Laboratory of Computer Science and Decision SupportFaculty of SciencesCasablancaMorocco

Personalised recommendations