Advertisement

Surrogate-Assisted Multiobjective Evolutionary Algorithm for Fuzzy Job Shop Problems

  • Juan José Palacios
  • Jorge Puente
  • Camino R. Vela
  • Inés González-RodríguezEmail author
  • El-Ghazali Talbi
Chapter
  • 662 Downloads
Part of the Operations Research/Computer Science Interfaces Series book series (ORCS, volume 62)

Abstract

We consider a job shop scheduling problem with uncertain processing times modelled as triangular fuzzy numbers and propose a multiobjective surrogate-assisted evolutionary algorithm to optimise not only the schedule’s fuzzy makespan but also the robustness of schedules with respect to different perturbations in the durations. The surrogate model is defined to avoid evaluating the robustness measure for some individuals and estimate it instead based on the robustness values of neighbouring individuals, where neighbour proximity is evaluated based on the similarity of fuzzy makespan values. The experimental results show that by using fitness estimation, it is possible to reach good fitness levels much faster than if all individuals are evaluated.

Keywords

Fuzzy job shop Robust scheduling Multiobjective evolutionary algorithm Surrogate fitness 

Notes

Acknowledgements

This research has been supported by the Spanish Government under Grant FEDER TIN2013-46511-C2-2-P.

References

  1. 1.
    H. Aytung, M.A. Lawley, K. McKay, M. Shantha, R. Uzsoy, Executing production schedules in the face of uncertainties: a review and some future directions. Eur. J. Oper. Res. 161, 86–110 (2005)CrossRefGoogle Scholar
  2. 2.
    C. Baudrit, D. Dubois, Practical representations of incomplete probabilistic knowledge. Comput. Stat. Data Anal. 51, 86–108 (2006)CrossRefGoogle Scholar
  3. 3.
    J. Bidot, T. Vidal, P. Laboire, A theoretic and practical framework for scheduling in stochastic environment. J. Sched. 12, 315–344 (2009)CrossRefGoogle Scholar
  4. 4.
    C. Bierwirth, A generalized permutation approach to jobshop scheduling with genetic algorithms. OR Spectr. 17, 87–92 (1995)CrossRefGoogle Scholar
  5. 5.
    J. Branke, C. Schmidt, Faster convergence by means of fitness estimation. Soft Comput. 9, 13–20 (2005)CrossRefGoogle Scholar
  6. 6.
    C.T. Chen, Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Set. Syst. 114, 1–9 (2000)CrossRefGoogle Scholar
  7. 7.
    S. Dabia, E.G. Talbi, T. van Woensel, T. De Kok, Approximating multi-objective scheduling problems. Comput. Oper. Res. 40, 1165–1175 (2013)CrossRefGoogle Scholar
  8. 8.
    K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  9. 9.
    D. Dubois, H. Fargier, P. Fortemps, Fuzzy scheduling: modelling flexible constraints vs. coping with incomplete knowledge. Eur. J. Oper. Res. 147, 231–252 (2003)Google Scholar
  10. 10.
    D. Dubois, L. Foulloy, G. Mauris, H. Prade, Probability-possibility transformations, triangular fuzzy sets and probabilistic inequalities. Reliab. Comput. 10, 273–297 (2004)CrossRefGoogle Scholar
  11. 11.
    P. Fortemps, Jobshop scheduling with imprecise durations: a fuzzy approach. IEEE Trans. Fuzzy Syst. 7, 557–569 (1997)CrossRefGoogle Scholar
  12. 12.
    O.A. Ghrayeb, A bi-criteria optimization: minimizing the integral value and spread of the fuzzy makespan of job shop scheduling problems. Appl. Soft Comput. 2(3), 197–210 (2003)CrossRefGoogle Scholar
  13. 13.
    I. González Rodríguez, J. Puente, C.R. Vela, R. Varela, Semantics of schedules for the fuzzy job shop problem. IEEE Trans. Syst. Man Cybern. A 38(3), 655–666 (2008)CrossRefGoogle Scholar
  14. 14.
    W. Herroelen, R. Leus, Project scheduling under uncertainty: survey and research potentials. Eur. J. Oper. Res. 165, 289–306 (2005)CrossRefGoogle Scholar
  15. 15.
    Y. Hu, M. Yin, X. Li, A novel objective function for job-shop scheduling problem with fuzzy processing time and fuzzy due date using differential evolution algorithm. Int. J. Adv. Manuf. Technol. 56, 1125–1138 (2011)CrossRefGoogle Scholar
  16. 16.
    Y. Jin, Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)CrossRefGoogle Scholar
  17. 17.
    M. Lopez-Ibañez, L. Paquete, T. Stützle, Exploratory analysis of stochastic local search algorithms in biobjective optimization, in Experimental Methods for the Analysis of Optimization Algorithms, chap. 9 (Springer, Berlin, 2010), pp. 209–222Google Scholar
  18. 18.
    J.J. Palacios, I. González-Rodríguez, C.R. Vela, J. Puente, Robust swarm optimisation for fuzzy open shop scheduling. Nat. Comput. 13(2), 145–156 (2014)CrossRefGoogle Scholar
  19. 19.
    J.J. Palacios, C.R. Vela, I. González-Rodríguez, J. Puente, Schedule generation schemes for job shop problems with fuzziness, in Proceedings of ECAI 2014, ed. by T. Schaub, G. Friedrich, B. O’Sullivan. Frontiers in Artificial Intelligence and Applications, vol. 263 (IOS Press, New York, 2014), pp. 687–692. doi: 10.3233/978-1-61499-419-0-687
  20. 20.
    J.J. Palacios, I. González-Rodríguez, C.R. Vela, J. Puente, Coevolutionary makespan optimisation through different ranking methods for the fuzzy flexible job shop. Fuzzy Set. Syst. 278, 81–97 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Puente, C.R. Vela, I. González-Rodríguez, Fast local search for fuzzy job shop scheduling, in Proceedings of ECAI 2010 (IOS Press, New York, 2010), pp. 739–744Google Scholar
  22. 22.
    B. Roy, Robustness in operational research and decision aiding: a multi-faceted issue. Eur. J. Oper. Res. 200, 629–638 (2010)CrossRefGoogle Scholar
  23. 23.
    E.G. Talbi, Metaheuristics. From Design to Implementation (Wiley, New York, 2009)Google Scholar
  24. 24.
    E. Vicente, A. Mateos, A. Jiménez, A new similarity function for generalized trapezoidal fuzzy numbers, in Artificial Intelligence and Soft Computing (Springer, Berlin, 2013), pp. 400–411Google Scholar
  25. 25.
    B. Wang, Q. Li, X. Yang, X. Wang, Robust and satisfactory job shop scheduling under fuzzy processing times and flexible due dates, in Proceedings of the 2010 IEEE International Conference on Automation and Logistics (2010), pp. 575–580Google Scholar
  26. 26.
    B.K. Wong, V.S. Lai, A survey of the application of fuzzy set theory in production and operations management: 1998–2009. Int. J. Prod. Econ. 129, 157–168 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Juan José Palacios
    • 1
  • Jorge Puente
    • 1
  • Camino R. Vela
    • 1
  • Inés González-Rodríguez
    • 2
    Email author
  • El-Ghazali Talbi
    • 3
  1. 1.Department of ComputingUniversity of OviedoGijónSpain
  2. 2.Department of Mathematics, Statistics and ComputingUniversity of CantabriaSantanderSpain
  3. 3.INRIA Laboratory, CRISTAL/CNRSUniversity Lille 1Villeneuve d’AscqFrance

Personalised recommendations