Advertisement

Strip Algorithms as an Efficient Way to Initialise Population-Based Metaheuristics

  • Birsen İrem SelamoğluEmail author
  • Abdellah Salhi
  • Muhammad Sulaiman
Chapter
Part of the Operations Research/Computer Science Interfaces Series book series (ORCS, volume 62)

Abstract

The Strip Algorithm (SA) is a constructive heuristic which has been tried on the Euclidean Travelling Salesman Problem (TSP) and other planar network problems with some success. Its attraction is its efficiency. In its simplest form, it can find tours of length \(\varOmega \ (\sqrt{n})\) in O (n log n) operations where n is the number of nodes. Here, we set out to investigate new variants such as the 2-Part Strip Algorithm (2-PSA), the Spiral Strip Algorithm (SSA) and the Adaptive Strip Algorithm (ASA). The latter is particularly suited for Euclidean TSPs with non-uniform distribution of cities across the grid; i.e problems with clustered cities. These cases present an overall low density, but high localised densities. ASA takes this into account in that smaller strips are generated where the density is high. All three algorithms are analysed, implemented and computationally tested against each other and the Classical Strip Algorithm. Computational results are included.

Keywords

Strip Algorithm Travelling Salesman Heuristics Optimisation 

Notes

Acknowledgement

We are grateful to the Ministry of National Education of the Republic of Turkey for sponsoring this work.

References

  1. 1.
    D. Avis, A survey of heuristics for the weighted matching problem. Networks 13(4), 475–493 (1983)CrossRefGoogle Scholar
  2. 2.
    J. Beardwood, J.H. Halton, J.M. Hammersley, The shortest path through many points, in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 55 (Cambridge University Press, Cambridge, 1959), pp. 299–327Google Scholar
  3. 3.
    C.F. Daganzo, The length of tours in zones of different shapes. Transp. Res. B Methodol. 18(2), 135–145 (1984)CrossRefGoogle Scholar
  4. 4.
    L. Few, The shortest path and the shortest road through n points. Mathematika 2(02), 141–144 (1955)CrossRefGoogle Scholar
  5. 5.
    J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence (MIT Press, Cambridge, 1992)Google Scholar
  6. 6.
    M. Iri, K. Murota, S. Matsui, Heuristics for planar minimum-weight perfect metchings. Networks 13(1), 67–92 (1983)CrossRefGoogle Scholar
  7. 7.
    D.S. Johnson, L.A. McGeoch, Experimental analysis of heuristics for the STSP, in The Traveling Salesman Problem and Its Variations (Springer, Heidelberg, 2007), pp. 369–443CrossRefGoogle Scholar
  8. 8.
    H.J. Karloff, How long can a Euclidean traveling salesman tour be? SIAM J. Discret. Math. 2(1), 91–99 (1989)CrossRefGoogle Scholar
  9. 9.
    G. Laporte, The traveling salesman problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992)CrossRefGoogle Scholar
  10. 10.
    G. Laporte, A concise guide to the traveling salesman problem. J. Oper. Res. Soc. 61(1), 35–40 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Lin, B.W. Kernighan, An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973). DOI 10.1287/opre.21.2.498. http://dx.doi.org/10.1287/opre.21.2.498 CrossRefGoogle Scholar
  12. 12.
    Y. Marinakis, Heuristic and metaheuristic algorithms for the traveling salesman problem, in Encyclopedia of Optimization (Springer, Boston, 2009), pp. 1498–1506Google Scholar
  13. 13.
    G. Reinelt, TSPLIB - A T.S.P. library. Technical Report 250, Universität Augsburg, Institut für Mathematik, Augsburg (1990)Google Scholar
  14. 14.
    G. Reinelt, The Traveling Salesman: Computational Solutions for TSP Applications (Springer, Berlin, 1994)Google Scholar
  15. 15.
    J.A.V. Rodríguez, A. Salhi, Hybrid evolutionary methods for the solution of complex scheduling problems, in Advances in Artificial Intelligence Research in Computing Science, vol. 20, eds. by A. Gelbukh, S. Torres, I. López (Center for Computing Research of IPN, 2006), pp. 17–28Google Scholar
  16. 16.
    A. Salhi, The ultimate solution approach to intractable problems, in Proceedings of the 6th IMT-GT Conference on Mathematics, Statistics and its Applications (2010), pp. 84–93Google Scholar
  17. 17.
    A. Salhi, E. Fraga, Nature-inspired optimisation approaches and the new plant propagation algorithm, in Proceedings of the ICeMATH2011 (2011), pp. K2-1–K2-8Google Scholar
  18. 18.
    A. Salhi, Ö. Töreyen, A game theory-based multi-agent system for expensive optimisation problems, in Computational Intelligence in Optimization (Springer, Berlin, 2010), pp. 211–232Google Scholar
  19. 19.
    S. Steinerberger, A new upper bound for the traveling salesman constant. Adv. Appl. Probab. 47(01), 27–36 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Sulaiman, A. Salhi, E.S. Fraga, The plant propagation algorithm: modifications and implementation. ArXiv e-prints (2014)Google Scholar
  21. 21.
    M. Sulaiman, A. Salhi, B.I. Selamoglu, O.B. Kirikchi, A plant propagation algorithm for constrained engineering optimisation problems. Math. Probl. Eng. (2014). Article ID 627416, 10 pp. doi:10.1155/2014/627416Google Scholar
  22. 22.
    K.J. Supowit, D.A. Plaisted, E.M. Reingold, Heuristics for weighted perfect matching, in Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing (ACM, New York, 1980), pp. 398–419Google Scholar
  23. 23.
    K.J. Supowit, E.M. Reingold, D.A. Plaisted, The travelling salesman problem and minimum matching in the unit square. SIAM J. Comput. 12(1), 144–156 (1983)CrossRefGoogle Scholar
  24. 24.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Birsen İrem Selamoğlu
    • 1
    Email author
  • Abdellah Salhi
    • 1
  • Muhammad Sulaiman
    • 2
  1. 1.University of EssexColchesterUK
  2. 2.Department of MathematicsAbdulWali Khan UniversityMardanPakistan

Personalised recommendations