Advertisement

A Metaheuristic Framework for Dynamic Network Flow Problems

  • M. Hajjem
  • H. BouziriEmail author
  • El-Ghazali Talbi
Chapter
  • 670 Downloads
Part of the Operations Research/Computer Science Interfaces Series book series (ORCS, volume 62)

Abstract

Dynamic network problems is a very interesting topic in modeling real life situations where we aim to send some flow to a given destination within time dependent parameters. This can occur in many applications such in evacuation of people or vehicules in emergency time.

The majority of existing algorithms are based on mathematical approximations. However, this work proposes another technique based on metaheuristics. A general framework is provided in both single and population based algorithms. Therefore, basic search techniques are proposed such as the crossover or the mutation. Moreover, solution representations are given within a general metaheuristical scheme. In addition, we assess a genetic algorithm by an experimental study is conducted on a case study of a building evacuation.

Keywords

Metaheuristic Genetic algorithm Dynamic flow problem Evacuation 

References

  1. 1.
    B. Awerbuch, T. Leighton, Improved approximation algorithms for the multi-commodity flow problem and local competitive routing in dynamic networks, in STOC ’94 Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 1994Google Scholar
  2. 2.
    N. Baumann, Evacuation by earliest arrival flows. PhD thesis, University Dortmund, Dortmund, 2006Google Scholar
  3. 3.
    N. Baumann, E. Köhler, Approximating earliest arrival flows with flow-dependent transit times. Discr. Appl. Math. 155, 161–171 (2007)CrossRefGoogle Scholar
  4. 4.
    N. Baumann, M. Skutella, Earliest arrival flows with multiple sources. Math. Oper. Res. 34, 499–512 (2009)CrossRefGoogle Scholar
  5. 5.
    R. Burkard, K. Dlaska, B. Klinz, The quickest flow problem. ZOR Methods Models Oper Res. 37, 31–58 (1993)CrossRefGoogle Scholar
  6. 6.
    R. Busacker, P. Gowen, A procedure for determining a family of minimal-cost network flow patterns. Technical report, Johns Hopkins University (1960)CrossRefGoogle Scholar
  7. 7.
    X. Cai, D. Sha, Time-varying universal maximum flow problems. Math. Comput. Modell. 33, 407–430 (2001)CrossRefGoogle Scholar
  8. 8.
    M. Dorigo, T. Stützle, Ant colony optimization: overview and recent advances, in Handbook of metaheuristics, vol. 164, 2010, pp. 227–263Google Scholar
  9. 9.
    L.K. Fleischer, Faster algorithms for the quickest transshipment problem. SIAM J. Optim. 12, 18–35 (2001)CrossRefGoogle Scholar
  10. 10.
    L.K. Fleischer, Universally maximum flow with piecewise constant capacity functions. Networks 38, 115–125 (2001)CrossRefGoogle Scholar
  11. 11.
    L. Fleischer, M. Skutella, The quickest multicommodity flow problem, in Integer Programming and Combinatorial Optimization, vol. 2337, 2002, pp. 36–53Google Scholar
  12. 12.
    L. Fleischer, M. Skutella, Minimum cost flows over time without intermediate storage, in SODA’03 Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2003, pp. 66–75Google Scholar
  13. 13.
    L. Ford, D. Fulkerson, Maximal flow through a network. Class. Pap. Combin. 8, 243–248 (1956)Google Scholar
  14. 14.
    L. Ford, D. Fulkerson, Constructing maximal dynamic flows from static flows. Oper. Res. 6, 419–433 (1958)CrossRefGoogle Scholar
  15. 15.
    L. Gale, Transient flows in networks. Mich. Math. J. 6, 59–63 (1959)CrossRefGoogle Scholar
  16. 16.
    B. Hajek, R.G. Ogier, Optimal dynamic routing in communication networks with continuous traffic. Networks 14, 457–487 (1984)CrossRefGoogle Scholar
  17. 17.
    A. Hall, S. Hippler, M. Skutella, Multicommodity flows over time: efficient algorithms and complexity. Theor. Comput. Sci. 379, 387–404 (2007)CrossRefGoogle Scholar
  18. 18.
    J. Halpern, A generalized dynamic network flows problem. Networks 9, 133–167 (1979)CrossRefGoogle Scholar
  19. 19.
    H. Hamacher, S. Tjandra, Mathematical modeling of evacuation problems: a state of the art, in Pedestrian and Evacuation Dynamics, vol. 19, 2002, pp. 227–266Google Scholar
  20. 20.
    B. Hoppe, E. Tardos, Polynomial time algorithms for some evacuation problems, in SODA ’94 Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, 1994, pp. 433–441Google Scholar
  21. 21.
    B. Hoppe, E. Tardos, The quickest transshipment problem. Math. Oper. Res. 25, 36–62 (2000)CrossRefGoogle Scholar
  22. 22.
    D. Karaboga, B. Gorkemli, C. Ozturk, N. Karaboga, A comprehensive survey: artificial bee colony algorithm and applications. Artif. Intell. Rev. 37, 1–37 (2012)CrossRefGoogle Scholar
  23. 23.
    B. Klinz, G. Woeginger, Minimum cost dynamic flows: the series-parallel case, in Integer Programming and Combinatorial Optimization, vol. 920 (1995), pp. 329–343Google Scholar
  24. 24.
    E. Köhler, M. Skutella, Flows over time with load-dependent transit times. SIAM J. Optim. 15, 1185–1202 (2005)CrossRefGoogle Scholar
  25. 25.
    E. Köhler, K. Langkau, M. Skutella, Time-expanded graphs for flow-dependent transit times, in Algorithms-ESA, vol. 2461, 2002, pp. 599–611Google Scholar
  26. 26.
    B. Kotnyek, An annotated overview of dynamic network flows. Technical report, National Institute of Research on Computer and Automata (2003)Google Scholar
  27. 27.
    E. Minieka, Dynamic network flows with arc changes. Networks 4, 255–265 (1974)CrossRefGoogle Scholar
  28. 28.
    J. Orlin, Minimum convex cost dynamic network flows. Math. Oper. Res. 9, 190–207 (1984)CrossRefGoogle Scholar
  29. 29.
    Y. Sheffi, Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods (Prentice-Hall, Englewood Cliffs, 1985)Google Scholar
  30. 30.
    E.G. Talbi, Metaheuristics: From Design to Implementation (Wiley, New York, 2009)CrossRefGoogle Scholar
  31. 31.
    S. Tjandra, Dynamic network optimization with application to the evacuation problem. PhD thesis, University Kaiserslautern, Kaiserslautern, 2003Google Scholar
  32. 32.
    W.L. Wilkinson, J. John, An algorithm for universal maximal dynamic flows in a network. Oper. Res. 19, 1602–1612 (1971)CrossRefGoogle Scholar
  33. 33.
    Y.G. Woldesenbet, Dynamic evolutionary algorithm with variable relocation. IEEE Trans. Evol. Comput. 13, 500–513 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.LARODEC, ISGUniversity of TunisTunisTunisia
  2. 2.LARODEC, ESSECUniversity of TunisTunisTunisia
  3. 3.INRIA Laboratory, CRISTAL/CNRSUniversity Lille 1Villeneuve d’AscqFrance

Personalised recommendations