Hidden Markov Model Classifier for the Adaptive Particle Swarm Optimization

  • Oussama Aoun
  • Malek SarhaniEmail author
  • Abdellatif El Afia
Part of the Operations Research/Computer Science Interfaces Series book series (ORCS, volume 62)


Particle swarm optimization (PSO) is a stochastic algorithm based population that integrates social interactions of animals in nature. Adaptive Particle swarm optimization (APSO) as an amelioration of the original one, improve the performance of global search and gives better efficiency. The APSO defines four evolutionary states: exploration, exploitation, convergence, and jumping out. According to the state, the inertia weight and acceleration coefficients are controlled. In this paper, we integrate Hidden Markov Model Particle swarm optimization (HMM) in APSO to have a stochastic state classification at each iteration. Furthermore, to tackle the problem of the dynamic environment during iterations, an additional online learning for HMM parameters is integrated into the algorithm using online Expectation-Maximization algorithm. We performed evaluations on ten benchmark functions to test the HMM integration inside APSO. Experimental results show that our proposed scheme outperforms other PSO variants in major cases regarding solution accuracy and specially convergence speed.


Particle swarm optimization Swarm intelligence Hidden Markov model Machine learning Parameters adaptation Metaheuristics control 


  1. 1.
    G. Ardizzon, G. Cavazzini, G. Pavesi, Adaptive acceleration coefficients for a new search diversification strategy in particle swarm optimization algorithms. Inf. Sci. 299, 337–378 (2015)CrossRefGoogle Scholar
  2. 2.
    L.E. Baum, T. Petrie, G. Soules, N. Weiss, A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat. 41, 164–171 (1970)CrossRefGoogle Scholar
  3. 3.
    O. Cappé, Online Em algorithm for hidden Markov models. J. Comput. Graph. Stat. 20(3), 728–748 (2011)CrossRefGoogle Scholar
  4. 4.
    C. DeBao, Z. ChunXia, Particle swarm optimization with adaptive population size and its application. Appl. Soft Comput. 9, 39–48 (2009)CrossRefGoogle Scholar
  5. 5.
    N. Di Mauro, F. Esposito, S. Ferilli, T.M.A. Basile, Avoiding order effects in incremental learning, in AI*IA 2005: Advances in Artificial Intelligence, ed. by S. Bandini, S. Manzoni. Lecture Notes in Computer Science, vol. 3673 (Springer, Berlin, 2005), pp. 110–121Google Scholar
  6. 6.
    J. Ding, J. Liu, K.R. Chowdhury, W. Zhang, Q. Hu, J. Lei, A particle swarm optimization using local stochastic search and enhancing diversity for continuous optimization. Neurocomputing 137, 261–267 (2014)CrossRefGoogle Scholar
  7. 7.
    M.G. Epitropakis, V.P. Plagianakos, M.N. Vrahatis, Evolving cognitive and social experience in particle swarm optimization through differential evolution: a hybrid approach. Inf. Sci. 216, 50–92 (2012)CrossRefGoogle Scholar
  8. 8.
    A.B. Hashemi, M.R. Meybodiv, A note on the learning automata based algorithms for adaptive parameter selection in PSO. Appl. Soft Comput. 11(1), 689–705 (2011)CrossRefGoogle Scholar
  9. 9.
    H. Huang, H. Qin, Z. Hao, A. Lim, Example-based learning particle swarm optimization for continuous optimization. Inf. Sci. 128, 125–138 (2012)CrossRefGoogle Scholar
  10. 10.
    S.S. Jadon, H. Sharma, J.C. Bansal, R. Tiwari, Self adaptive acceleration factor in particle swarm optimization, in Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications, vol. 1 (Springer India, New Delhi, 2013), pp. 325–340Google Scholar
  11. 11.
    W. Jiang, Y. Zhang, R. Wang, Comparative study on several PSO algorithms, in The 26th Chinese Control and Decision Conference (2014 CCDC), May 2014, pp. 1117–1119Google Scholar
  12. 12.
    H. Jianxiu, Z. Jianchao, A two-order particle swarm optimization model [J]. J. Comput. Res. Dev. 11, 004 (2007)Google Scholar
  13. 13.
    S.M. Kamalapur, V.H. Patil, Impact of acceleration coefficient strategies with random neighborhood topology in particle swarm optimization. Int. J. Emerg. Technol. Comput. Appl. Sci. 3(1), 37–42 (2012)Google Scholar
  14. 14.
    J. Kennedy, R.C. Eberhart, Particle swarm optimization, in Proceedings of IEEE International Conference Neural Networks (IEEE, New York, 1995), pp. 1942–1948CrossRefGoogle Scholar
  15. 15.
    A. Khare, S. Rangnekar, A review of particle swarm optimization and its applications in solar photovoltaic system. Appl. Soft Comput. 13, 2997–3006 (2013)CrossRefGoogle Scholar
  16. 16.
    X. Liang, W. Li, Y. Zhang, M.C. Zhou, An adaptive particle swarm optimization method based on clustering. Soft Comput. 19(2), 431–448 (2015)CrossRefGoogle Scholar
  17. 17.
    L.-l. Liu, X.-B. Gao, An adaptive simulation of bacterial foraging algorithm. Basic Sci. J. Text. Univ. 4, 022 (2012)Google Scholar
  18. 18.
    F. Pan, X.-T. Li, Q. Zhou, W.-X. Li, Q. Gao. Analysis of standard particle swarm optimization algorithm based on Markov chain. Acta Automat. Sin. 39(4), 381–389 (2013)CrossRefGoogle Scholar
  19. 19.
    R.E. Perez, K. Behdinan, Particle swarm approach for structural design optimization. Comput. Struct. 85, 1579–88 (2007)CrossRefGoogle Scholar
  20. 20.
    S. Phon-Amnuaisuk, Estimating HMM parameters using particle swarm optimisation, in Applications of Evolutionary Computing, ed. by M. Giacobini, A. Brabazon, S. Cagnoni, G.A. Di Caro, A. Ekart, A.I. Esparcia-Alcazar, M. Farooq, A. Fink, P. Machado. Lecture Notes in Computer Science, vol. 5484 (Springer, Berlin, 2009), pp. 625–634Google Scholar
  21. 21.
    R. Polikar, L. Upda, S.S. Upda, V. Honavar, Learn++: an incremental learning algorithm for supervised neural networks. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 31(4), 497–508 (2001)CrossRefGoogle Scholar
  22. 22.
    L. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar
  23. 23.
    Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in Proceeding of the IEEE World Congress of Computational Intelligence, 1997, pp. 69–73Google Scholar
  24. 24.
    P. Subbaraj, R. Rengaraj, S. Salivahanan, T.R. Senthilkumar, Parallel particle swarm optimization with modified stochastic acceleration factors for solving large scale economic dispatch problem. Int. J. Electr. Power Energy Syst. 32(9), 1014–1023 (2010)CrossRefGoogle Scholar
  25. 25.
    S. Sun, H. Liu, Particle swarm algorithm: convergence and applications, in Swarm Intelligence and Bio-Inspired Computation, ed. by X.-S. Yang, Z. Cui, R. Xiao, A.H. Gandomi, M. Karamanoglu (Elsevier, Amsterdam, 2013), pp. 137–168CrossRefGoogle Scholar
  26. 26.
    Y. Tang, Z. Wang, J.A. Fang, Feedback learning particle swarm optimization. Appl. Soft Comput. 11, 4713–4725 (2011)CrossRefGoogle Scholar
  27. 27.
    F. van den Bergh, A. Engelbrecht, A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)CrossRefGoogle Scholar
  28. 28.
    S. Wang, M. Chen, D. Huang, X. Guo, C. Wang, Dream effected particle swarm optimization algorithm. J. Inf. Comput. Sci. 11(15), 5631–5640 (2014)CrossRefGoogle Scholar
  29. 29.
    Z Wu, Optimization of distribution route selection based on particle swarm algorithm. Int. J. Simul. Model. 13(2), 230–242 (2014)CrossRefGoogle Scholar
  30. 30.
    F. Yang, C. Zhang, An effective hybrid optimization algorithm for HMM, in Fourth International Conference on Natural Computation, 2008. ICNC ’08, Oct 2008, vol. 4, pp. 80–84Google Scholar
  31. 31.
    X. Yu, X. Zhang, Enhanced comprehensive learning particle swarm optimization. Appl. Math. Comput. 242, 265–276 (2014)Google Scholar
  32. 32.
    Z.-H. Zhan, J. Zhang, Y. Li, H.S.-H. Chung, Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(6), 1362–1381 (2009)CrossRefGoogle Scholar
  33. 33.
    Z. Zhan, J. Zhang, Y. Li, Y.H. Shi, Orthogonal learning particle swarm optimization. IEEE Trans. Evol. Comput. 15, 832–847 (2011)CrossRefGoogle Scholar
  34. 34.
    L. Zhang, Y. Tang, C. Hua, X. Guan, A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques. Appl. Soft Comput. 28, 138–149 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Oussama Aoun
    • 1
  • Malek Sarhani
    • 1
    Email author
  • Abdellatif El Afia
    • 1
  1. 1.Department of Informatics and Decision SupportMohammed V UniversityRabatMorocco

Personalised recommendations