Skip to main content

Development of the Protein Arginine Deiminase (PAD) Inhibitors

  • Chapter
  • First Online:
Protein Deimination in Human Health and Disease

Abstract

The protein arginine deiminases (PADs) catalyze the hydrolysis of positively charged arginine residues to generate neutral citrulline. This reaction is a calciumdependent process wherein calcium binding triggers a conformational change that results in a >10,000-fold increase in activity (Liu et al. 2011; Kearney et al. 2005). There are five known PAD isozymes (PAD1–PAD4 and PAD6), of which only PAD1–PAD4 are catalytically active (Raijmakers et al. 2007). Dysregulated PAD activity has been associated with a variety of autoimmune diseases as well as cancers, with potentially distinct roles for the individual isozymes. Given the abundant evidence linking aberrant PAD activity to human disease, there is a pressing need to develop potent and isozyme-specific inhibitors for use as therapeutics and/or probes to decipher the full complement of processes regulated by these enzymes. Herein, we discuss the latest developments in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arita, K., Hashimoto, H., Shimizu, T., Nakashima, K., Yamada, M., & Sato, M. (2004). Structural basis for Ca(2+)-induced activation of human PAD4. Nature Structural & Molecular Biology, 11, 777–783.

    Article  CAS  Google Scholar 

  • Berlyne, G. M. (1998). Carbamylated proteins and peptides in health and in uremia. Nephron, 79, 125–130.

    Article  CAS  PubMed  Google Scholar 

  • Bicker, K. L., Anguish, L., Chumanevich, A. A., Cameron, M. D., Cui, X., Witalison, E., Subramanian, V., Zhang, X., Chumanevich, A. P., Hofseth, L. J., Coonrod, S. A., & Thompson, P. R. (2012). D-amino acid based protein arginine deiminase inhibitors: Synthesis, pharmacokinetics, and in cellulo efficacy. ACS Medicinal Chemistry Letters, 3, 1081–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolzan, A. D., & Bianchi, M. S. (2001). Genotoxicity of streptonigrin: A review. Mutation Research, 488, 25–37.

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., Weinrauch, Y., & Zychlinsky, A. (2004). Neutrophil extracellular traps kill bacteria. Science, 303, 1532–1535.

    Article  CAS  PubMed  Google Scholar 

  • Burska, A. N., Hunt, L., Boissinot, M., Strollo, R., Ryan, B. J., Vital, E., Nissim, A., Winyard, P. G., Emery, P., & Ponchel, F. (2014). Autoantibodies to posttranslational modifications in rheumatoid arthritis. Mediators of Inflammation, 2014, 492873.

    PubMed  PubMed Central  Google Scholar 

  • Causey, C. P., Jones, J. E., Slack, J. L., Kamei, D., Jones, L. E., Subramanian, V., Knuckley, B., Ebrahimi, P., Chumanevich, A. A., Luo, Y., Hashimoto, H., Sato, M., Hofseth, L. J., & Thompson, P. R. (2011). The development of N-alpha-(2-carboxyl)benzoyl-N(5)-(2-fluoro-1-iminoethyl)-l-ornithine amide (o-F-amidine) and N-alpha-(2-carboxyl)benzoyl-N(5)-(2-chloro-1-iminoethyl)-l-ornithine amide (o-Cl-amidine) as second generation protein arginine deiminase (PAD) inhibitors. Journal of Medicinal Chemistry, 54, 6919–6935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chumanevich, A. A., Causey, C. P., Knuckley, B. A., Jones, J. E., Poudyal, D., Chumanevich, A. P., Davis, T., Matesic, L. E., Thompson, P. R., & Hofseth, L. J. (2011a). Suppression of colitis in mice by Cl-amidine: A novel peptidylarginine deiminase inhibitor. American Journal of Physiology. Gastrointestinal and Liver Physiology, 300, G929–G938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chumanevich, A. A., Causey, C. P., Knuckley, B. A., Jones, J. E., Poudyal, D., Chumanevich, A. P., Davis, T., Matesic, L. E., Thompson, P. R., & Hofseth, L. J. (2011b). Suppression of colitis in mice by Cl-amidine: A novel peptidylarginine deiminase (PAD) inhibitor. American Journal of Physiology. Gastrointestinal and Liver Physiology, 300, G929–G938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreyton, C. J., Anderson, E. D., Subramanian, V., Boger, D. L., & Thompson, P. R. (2014). Insights into the mechanism of streptonigrin-induced protein arginine deiminase inactivation. Bioorganic & Medicinal Chemistry, 22, 1362–1369.

    Article  CAS  Google Scholar 

  • Fadini, G. P., Menegazzo, L., Rigato, M., Scattolini, V., Poncina, N., Bruttocao, A., Ciciliot, S., Mammano, F., Ciubotaru, C. D., Brocco, E., Marescotti, M. C., Cappellari, R., Arrigoni, G., Millioni, R., Vigili de Kreutzenberg, S., Albiero, M., & Avogaro, A. (2016). NETosis delays diabetic wound healing in mice and humans. Diabetes, 65, 1061–1071.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs, T. A., Brill, A., Duerschmied, D., Schatzberg, D., Monestier, M., Myers, D. D., Jr., Wrobleski, S. K., Wakefield, T. W., Hartwig, J. H., & Wagner, D. D. (2010). Extracellular DNA traps promote thrombosis. Proceedings of the National Academy of Sciences of the United States of America, 107, 15880–15885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrmann, J., & Thompson, P. R. (2016). Protein arginine methylation and citrullination in epigenetic regulation. ACS Chemical Biology, 11, 654–668.

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann, J., Clancy, K. W., & Thompson, P. R. (2015). Chemical biology of protein arginine modifications in epigenetic regulation. Chemical Reviews, 115, 5413–5461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghari, F., Quirke, A. M., Munro, S., Kawalkowska, J., Picaud, S., McGouran, J., Subramanian, V., Muth, A., Williams, R., Kessler, B., Thompson, P. R., Fillipakopoulos, P., Knapp, S., Venables, P. J., & La Thangue, N. B. (2016). Citrullination-acetylation interplay guides E2F-1 activity during the inflammatory response. Science Advances, 2, e1501257.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guertin, M. J., Zhang, X., Anguish, L., Kim, S., Varticovski, L., Lis, J. T., Hager, G. L., & Coonrod, S. A. (2014). Targeted H3R26 deimination specifically facilitates estrogen receptor binding by modifying nucleosome structure. PLoS Genetics, 10, e1004613.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hakkim, A., Furnrohr, B. G., Amann, K., Laube, B., Abed, U. A., Brinkmann, V., Herrmann, M., Voll, R. E., & Zychlinsky, A. (2010). Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proceedings of the National Academy of Sciences of the United States of America, 107, 9813–9818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, W., Zhou, P., Chang, Z., Liu, B., Liu, X., Wang, Y., Li, Y., & Alam, H. B. (2016). Inhibition of peptidylarginine deiminase attenuates inflammation and improves survival in a rat model of hemorrhagic shock. The Journal of Surgical Research, 200, 610–618.

    Article  CAS  PubMed  Google Scholar 

  • Horibata, S., Vo, T. V., Subramanian, V., Thompson, P. R., & Coonrod, S. A. (2015). Utilization of the soft agar colony formation assay to identify inhibitors of tumorigenicity in breast cancer cells. Journal of Visualized Experiments, (99), e52727.

    Google Scholar 

  • Ishida-Yamamoto, A., Senshu, T., Takahashi, H., Akiyama, K., Nomura, K., & Iizuka, H. (2000). Decreased deiminated keratin K1 in psoriatic hyperproliferative epidermis. The Journal of Investigative Dermatology, 114, 701–705.

    Article  CAS  PubMed  Google Scholar 

  • Jamali, H., Khan, H. A., Stringer, J. R., Chowdhury, S., & Ellman, J. A. (2015). Identification of multiple structurally distinct, nonpeptidic small molecule inhibitors of protein arginine deiminase 3 using a substrate-based fragment method. Journal of the American Chemical Society, 137, 3616–3621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamali, H., Khan, H. A., Tjin, C. C., & Ellman, J. A. (2016). Cellular activity of new small molecule protein arginine deiminase 3 (PAD3) inhibitors. ACS Medicinal Chemistry Letters, 7, 847–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, J. E., Causey, C. P., Knuckley, B., Slack-Noyes, J. L., & Thompson, P. R. (2009). Protein arginine deiminase 4 (PAD4): Current understanding and future therapeutic potential. Current Opinion in Drug Discovery & Development, 12, 616–627.

    CAS  Google Scholar 

  • Jones, J. E., Slack, J. L., Fang, P., Zhang, X., Subramanian, V., Causey, C. P., Coonrod, S. A., Guo, M., & Thompson, P. R. (2012). Synthesis and screening of a haloacetamidine containing library to identify PAD4 selective inhibitors. ACS Chemical Biology, 7, 160–165.

    Article  CAS  PubMed  Google Scholar 

  • Kawalkowska, J., Quirke, A. M., Ghari, F., Davis, S., Subramanian, V., Thompson, P. R., Williams, R. O., Fischer, R., La Thangue, N. B., & Venables, P. J. (2016). Abrogation of collagen-induced arthritis by a peptidyl arginine deiminase inhibitor is associated with modulation of T cell-mediated immune responses. Scientific Reports, 6, 26430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearney, P. L., Bhatia, M., Jones, N. G., Yuan, L., Glascock, M. C., Catchings, K. L., Yamada, M., & Thompson, P. R. (2005). Kinetic characterization of protein arginine deiminase 4: A transcriptional corepressor implicated in the onset and progression of rheumatoid arthritis. Biochemistry, 44, 10570–10582.

    Article  CAS  PubMed  Google Scholar 

  • Khandpur, R., Carmona-Rivera, C., Vivekanandan-Giri, A., Gizinski, A., Yalavarthi, S., Knight, J. S., Friday, S., Li, S., Patel, R. M., Subramanian, V., Thompson, P., Chen, P., Fox, D. A., Pennathur, S., & Kaplan, M. J. (2013). NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Science Translational Medicine, 5, 178ra140.

    Article  Google Scholar 

  • Knight, J. S., & Kaplan, M. J. (2012). Lupus neutrophils: ‘NET’ gain in understanding lupus pathogenesis. Current Opinion in Rheumatology, 24, 441–450.

    Article  CAS  PubMed  Google Scholar 

  • Knight, J. S., Zhao, W., Luo, W., Subramanian, V., O’Dell, A. A., Yalavarthi, S., Hodgin, J. B., Eitzman, D. T., Thompson, P. R., & Kaplan, M. J. (2013). Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. The Journal of Clinical Investigation, 123, 2981–2993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight, J. S., Luo, W., O’Dell, A. A., Yalavarthi, S., Zhao, W., Subramanian, V., Guo, C., Grenn, R. C., Thompson, P. R., Eitzman, D. T., & Kaplan, M. J. (2014a). Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circulation Research, 114, 947–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight, J. S., Subramanian, V., O’Dell, A. A., Yalavarthi, S., Zhao, W., Smith, C. K., Hodgin, J. B., Thompson, P. R., & Kaplan, M. J. (2014b). Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice. Annals of the Rheumatic Diseases, 74, 2199–2206.

    Article  PubMed  PubMed Central  Google Scholar 

  • Knight, J. S., Luo, W., O’Dell, A. A., Yalavarthi, S., Zhao, W., Subramanian, V., Guo, C., Grenn, R. C., Thompson, P. R., Eitzman, D. T., & Kaplan, M. J. (2014c). Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circulation Research, 114, 947–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight, J. S., Subramanian, V., O’Dell, A. A., Yalavarthi, S., Zhao, W., Smith, C. K., Hodgin, J. B., Thompson, P. R., & Kaplan, M. J. (2015). Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice. Annals of the Rheumatic Diseases, 74, 2199–2206.

    Article  CAS  PubMed  Google Scholar 

  • Knuckley, B., Luo, Y., & Thompson, P. R. (2008). Profiling protein arginine deiminase 4 (PAD4): A novel screen to identify PAD4 inhibitors. Bioorganic & Medicinal Chemistry, 16, 739–745.

    Article  CAS  Google Scholar 

  • Knuckley, B., Causey, C. P., Jones, J. E., Bhatia, M., Dreyton, C. J., Osborne, T. C., Takahara, H., & Thompson, P. R. (2010a). Substrate specificity and kinetic studies of PADs 1, 3, and 4 identify potent and selective inhibitors of protein arginine deiminase 3. Biochemistry, 49, 4852–4863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knuckley, B., Jones, J. E., Bachovchin, D. A., Slack, J., Causey, C. P., Brown, S. J., Rosen, H., Cravatt, B. F., & Thompson, P. R. (2010b). A fluopol-ABPP HTS assay to identify PAD inhibitors. Chemical Communications, 46, 7175–7177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamensa, J. W., & Moscarello, M. A. (1993). Deimination of human myelin basic protein by a peptidylarginine deiminase from bovine brain. Journal of Neurochemistry, 61, 987–996.

    Article  CAS  PubMed  Google Scholar 

  • Lange, S., Gogel, S., Leung, K. Y., Vernay, B., Nicholas, A. P., Causey, C. P., Thompson, P. R., Greene, N. D., & Ferretti, P. (2011). Protein deiminases: New players in the developmentally regulated loss of neural regenerative ability. Developmental Biology, 355, 205–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange, S., Rocha-Ferreira, E., Thei, L., Mawjee, P., Bennett, K., Thompson, P. R., Subramanian, V., Nicholas, A. P., Peebles, D., Hristova, M., & Raivich, G. (2014). Peptidylarginine deiminases: Novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates. Journal of Neurochemistry, 130, 555–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewallen, D. M., Bicker, K. L., Madoux, F., Chase, P., Anguish, L., Coonrod, S., Hodder, P., & Thompson, P. R. (2014). A FluoPol-ABPP PAD2 high-throughput screen identifies the first calcium site inhibitor targeting the PADs. ACS Chemical Biology, 9, 913–921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis, H. D., & Nacht, M. (2016). iPAD or PADi-‘tablets’ with therapeutic disease potential? Current Opinion in Chemical Biology, 33, 169–178.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, H. D., Liddle, J., Coote, J. E., Atkinson, S. J., Barker, M. D., Bax, B. D., Bicker, K. L., Bingham, R. P., Campbell, M., Chen, Y. H., Chung, C. W., Craggs, P. D., Davis, R. P., Eberhard, D., Joberty, G., Lind, K. E., Locke, K., Maller, C., Martinod, K., Patten, C., Polyakova, O., Rise, C. E., Rudiger, M., Sheppard, R. J., Slade, D. J., Thomas, P., Thorpe, J., Yao, G., Drewes, G., Wagner, D. D., Thompson, P. R., Prinjha, R. K., & Wilson, D. M. (2015). Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nature Chemical Biology, 11, 189–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, P., Yao, H., Zhang, Z., Li, M., Luo, Y., Thompson, P. R., Gilmour, D. S., & Wang, Y. (2008). Regulation of p53 target gene expression by peptidylarginine deiminase 4. Molecular and Cellular Biology, 28, 4745–4758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, G., Hayward, I. N., Jenkins, B. R., Rothfuss, H. M., Young, C. H., Nevalainen, M. T., Muth, A., Thompson, P. R., Navratil, A. M., & Cherrington, B. D. (2016). Peptidylarginine deiminase 3 (PAD3) is upregulated by prolactin stimulation of CID-9 cells and expressed in the lactating mouse mammary gland. PloS One, 11, e0147503.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Y. L., Chiang, Y. H., Liu, G. Y., & Hung, H. C. (2011). Functional role of dimerization of human peptidylarginine deiminase 4 (PAD4). PloS One, 6, e21314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luban, S., & Li, Z. G. (2010). Citrullinated peptide and its relevance to rheumatoid arthritis: An update. International Journal of Rheumatic Diseases, 13, 284–287.

    Article  PubMed  Google Scholar 

  • Luo, Y., Knuckley, B., Lee, Y. H., Stallcup, M. R., & Thompson, P. R. (2006a). A fluoroacetamidine-based inactivator of protein arginine deiminase 4: Design, synthesis, and in vitro and in vivo evaluation. Journal of the American Chemical Society, 128, 1092–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, Y., Arita, K., Bhatia, M., Knuckley, B., Lee, Y. H., Stallcup, M. R., Sato, M., & Thompson, P. R. (2006b). Inhibitors and inactivators of protein arginine deiminase 4: Functional and structural characterization. Biochemistry, 45, 11727–11736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makrygiannakis, D., af Klint, E., Lundberg, I. E., Lofberg, R., Ulfgren, A. K., Klareskog, L., & Catrina, A. I. (2006). Citrullination is an inflammation-dependent process. Annals of the Rheumatic Diseases, 65, 1219–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinod, K., Demers, M., Fuchs, T. A., Wong, S. L., Brill, A., Gallant, M., Hu, J., Wang, Y., & Wagner, D. D. (2013). Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proceedings of the National Academy of Sciences of the United States of America, 110, 8674–8679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masson-Bessiere, C., Sebbag, M., Girbal-Neuhauser, E., Nogueira, L., Vincent, C., Senshu, T., & Serre, G. (2001). The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the alpha- and beta-chains of fibrin. Journal of Immunology, 166, 4177–4184.

    Article  CAS  Google Scholar 

  • McElwee, J. L., Mohanan, S., Griffith, O. L., Breuer, H. C., Anguish, L. J., Cherrington, B. D., Palmer, A. M., Howe, L. R., Subramanian, V., Causey, C. P., Thompson, P. R., Gray, J. W., & Coonrod, S. A. (2012a). Identification of PADI2 as a potential breast cancer biomarker and therapeutic target. BMC Cancer, 12, 500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McElwee, J. L., Mohanan, S., Griffith, O. L., Breuer, H. C., Anguish, L. J., Cherrington, B. D., Palmer, A. M., Howe, L. R., Subramanian, V., Causey, C. P., Thompson, P. R., Gray, J. W., & Coonrod, S. A. (2012b). Identification of PADI2 as a potential breast cancer biomarker and therapeutic target. BMC Cancer, 12, 500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meir, K. S., & Leitersdorf, E. (2004). Atherosclerosis in the apolipoprotein-E-deficient mouse: A decade of progress. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1006–1014.

    Article  CAS  PubMed  Google Scholar 

  • Mohanan, S., Cherrington, B. D., Horibata, S., McElwee, J. L., Thompson, P. R., & Coonrod, S. A. (2012). Potential role of peptidylarginine deiminase enzymes and protein citrullination in cancer pathogenesis. Biochemistry Research International, 2012, 895343.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moscarello, M. A., Mastronardi, F. G., & Wood, D. D. (2007). The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochemical Research, 32, 251–256.

    Article  CAS  PubMed  Google Scholar 

  • Moscarello, M. A., Lei, H., Mastronardi, F. G., Winer, S., Tsui, H., Li, Z., Ackerley, C., Zhang, L., Raijmakers, R., & Wood, D. D. (2013). Inhibition of peptidyl-arginine deiminases reverses protein-hypercitrullination and disease in mouse models of multiple sclerosis. Disease Models & Mechanisms, 6, 467–478.

    Article  CAS  Google Scholar 

  • Musse, A. A., Li, Z., Ackerley, C. A., Bienzle, D., Lei, H., Poma, R., Harauz, G., Moscarello, M. A., & Mastronardi, F. G. (2008). Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system. Disease Models & Mechanisms, 1, 229–240.

    Article  CAS  Google Scholar 

  • Nicholas, A. P. (2011). Dual immunofluorescence study of citrullinated proteins in Parkinson diseased substantia nigra. Neuroscience Letters, 495, 26–29.

    Article  CAS  PubMed  Google Scholar 

  • Nicholas, A. P. (2013). Dual immunofluorescence study of citrullinated proteins in Alzheimer diseased frontal cortex. Neuroscience Letters, 545, 107–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puszczewicz, M., & Iwaszkiewicz, C. (2011). Role of anti-citrullinated protein antibodies in diagnosis and prognosis of rheumatoid arthritis. Archives of Medical Science, 7, 189–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raijmakers, R., Zendman, A. J., Egberts, W. V., Vossenaar, E. R., Raats, J., Soede-Huijbregts, C., Rutjes, F. P., van Veelen, P. A., Drijfhout, J. W., & Pruijn, G. J. (2007). Methylation of arginine residues interferes with citrullination by peptidylarginine deiminases in vitro. Journal of Molecular Biology, 367, 1118–1129.

    Article  CAS  PubMed  Google Scholar 

  • Saijo, S., Nagai, A., Kinjo, S., Mashimo, R., Akimoto, M., Kizawa, K., Yabe-Wada, T., Shimizu, N., Takahara, H., & Unno, M. (2016). Monomeric form of peptidylarginine deiminase type I revealed by X-ray crystallography and small-angle X-ray scattering. Journal of Molecular Biology, 428, 3058–3073.

    Article  CAS  PubMed  Google Scholar 

  • Salmon, J. E., & Roman, M. J. (2008). Subclinical atherosclerosis in rheumatoid arthritis and systemic lupus erythematosus. The American Journal of Medicine, 121, S3–S8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Savchenko, A. S., Inoue, A., Ohashi, R., Jiang, S., Hasegawa, G., Tanaka, T., Hamakubo, T., Kodama, T., Aoyagi, Y., Ushiki, T., & Naito, M. (2011). Long pentraxin 3 (PTX3) expression and release by neutrophils in vitro and in ulcerative colitis. Pathology International, 61, 290–297.

    Article  CAS  PubMed  Google Scholar 

  • Slack, J. L., Causey, C. P., Luo, Y., & Thompson, P. R. (2011). Development and use of clickable activity based protein profiling agents for protein arginine deiminase 4. ACS Chemical Biology, 6, 466–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slade, D. J., Fang, P., Dreyton, C. J., Zhang, Y., Fuhrmann, J., Rempel, D., Bax, B. D., Coonrod, S. A., Lewis, H. D., Guo, M., Gross, M. L., & Thompson, P. R. (2015). Protein arginine deiminase 2 binds calcium in an ordered fashion: Implications for inhibitor design. ACS Chemical Biology, 10, 1043–1053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, C. K., Vivekanandan-Giri, A., Tang, C., Knight, J. S., Mathew, A., Padilla, R. L., Gillespie, B. W., Carmona-Rivera, C., Liu, X., Subramanian, V., Hasni, S., Thompson, P. R., Heinecke, J. W., Saran, R., Pennathur, S., & Kaplan, M. J. (2014). Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: An additional proatherogenic mechanism in systemic lupus erythematosus. Arthritis & Rhematology, 66, 2532–2544.

    Article  CAS  Google Scholar 

  • Sokolove, J., Brennan, M. J., Sharpe, O., Lahey, L. J., Kao, A. H., Krishnan, E., Edmundowicz, D., Lepus, C. M., Wasko, M. C., & Robinson, W. H. (2013). Brief report: Citrullination within the atherosclerotic plaque: A potential target for the anti-citrullinated protein antibody response in rheumatoid arthritis. Arthritis and Rheumatism, 65, 1719–1724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone, E. M., Schaller, T. H., Bianchi, H., Person, M. D., & Fast, W. (2005). Inactivation of two diverse enzymes in the amidinotransferase superfamily by 2-chloroacetamidine: Dimethylargininase and peptidylarginine deiminase. Biochemistry, 44, 13744–13752.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian, V., Knight, J. S., Parelkar, S., Anguish, L., Coonrod, S. A., Kaplan, M. J., & Thompson, P. R. (2015). Design, synthesis, and biological evaluation of tetrazole analogs of Cl-amidine as protein arginine deiminase inhibitors. Journal of Medicinal Chemistry, 58, 1337–1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swaminathan, S., & Shah, S. V. (2011). Novel inflammatory mechanisms of accelerated atherosclerosis in kidney disease. Kidney International, 80, 453–463.

    Article  CAS  PubMed  Google Scholar 

  • Tu, R., Grover, H. M., & Kotra, L. P. (2016). Peptidyl arginine deiminases and neurodegenerative diseases. Current Medicinal Chemistry, 23, 104–114.

    Article  CAS  PubMed  Google Scholar 

  • van Boekel, M. A., Vossenaar, E. R., van den Hoogen, F. H., & van Venrooij, W. J. (2002). Autoantibody systems in rheumatoid arthritis: Specificity, sensitivity and diagnostic value. Arthritis Research, 4, 87–93.

    Article  PubMed  Google Scholar 

  • Van Steendam, K., Tilleman, K., & Deforce, D. (2011). The relevance of citrullinated vimentin in the production of antibodies against citrullinated proteins and the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford), 50, 830–837.

    Article  Google Scholar 

  • Villanueva, E., Yalavarthi, S., Berthier, C. C., Hodgin, J. B., Khandpur, R., Lin, A. M., Rubin, C. J., Zhao, W., Olsen, S. H., Klinker, M., Shealy, D., Denny, M. F., Plumas, J., Chaperot, L., Kretzler, M., Bruce, A. T., & Kaplan, M. J. (2011). Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. Journal of Immunology, 187, 538–552.

    Article  CAS  Google Scholar 

  • Wang, Y., Li, P., Wang, S., Hu, J., Chen, X. A., Wu, J., Fisher, M., Oshaben, K., Zhao, N., Gu, Y., Wang, D., & Chen, G. (2012a). Anticancer PAD inhibitors regulate the autophagy flux and the mammalian target of rapamycin complex 1 activity. The Journal of Biological Chemistry, 287, 25941–25953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Li, P., Wang, S., Hu, J., Chen, X. A., Wu, J., Fisher, M., Oshaben, K., Zhao, N., Gu, Y., Wang, D., Chen, G., & Wang, Y. (2012b). Anticancer peptidylarginine deiminase (PAD) inhibitors regulate the autophagy flux and the mammalian target of rapamycin complex 1 activity. The Journal of Biological Chemistry, 287, 25941–25953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willis, V. (2012). The role of citrullination in the development of mouse and human inflammatory arthritis. In Molecular biology (p. 146). Denver, CO: University of Colorado.

    Google Scholar 

  • Willis, V. C., Gizinski, A. M., Banda, N. K., Causey, C. P., Knuckley, B., Cordova, K. N., Luo, Y., Levitt, B., Glogowska, M., Chandra, P., Kulik, L., Robinson, W. H., Arend, W. P., Thompson, P. R., & Holers, V. M. (2011). N-alpha-benzoyl-N5-(2-Chloro-1-Iminoethyl)-L-ornithine amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis. Journal of Immunology, 186, 4396–4404.

    Article  CAS  Google Scholar 

  • Witalison, E. E., Cui, X., Causey, C. P., Thompson, P. R., & Hofseth, L. J. (2015a). Molecular targeting of protein arginine deiminases to suppress colitis and prevent colon cancer. Oncotarget, 6, 36053–36062.

    PubMed  PubMed Central  Google Scholar 

  • Witalison, E. E., Cui, X., Hofseth, A. B., Subramanian, V., Causey, C. P., Thompson, P. R., & Hofseth, L. J. (2015b). Inhibiting protein arginine deiminases has antioxidant consequences. The Journal of Pharmacology and Experimental Therapeutics, 353, 64–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Bolt, M., Guertin, M. J., Chen, W., Zhang, S., Cherrington, B. D., Slade, D. J., Dreyton, C. J., Subramanian, V., Bicker, K. L., Thompson, P. R., Mancini, M. A., Lis, J. T., & Coonrod, S. A. (2012). Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor alpha target gene activation. Proceedings of the National Academy of Sciences of the United States of America, 109, 13331–13336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Muth, A., Thompson, P.R. (2017). Development of the Protein Arginine Deiminase (PAD) Inhibitors. In: Nicholas, A., Bhattacharya, S., Thompson, P. (eds) Protein Deimination in Human Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-58244-3_23

Download citation

Publish with us

Policies and ethics