Skip to main content

Deimination in Multiple Sclerosis: The Bad, the Good, and the Ugly

  • Chapter
  • First Online:

Abstract

Multiple sclerosis (MS) is a chronic, autoimmune, demyelinating, and degenerative disease that affects the central nervous system. The majority of patients are diagnosed between the ages of 20 and 40, and it is a leading cause of disability among young adults (Hauser and Goodin 2015; Lavery et al. 2014). MS typically presents with acute attacks of neurologic symptoms such as weakness, imbalance, vision loss, or numbness that are called “relapses,” and these occur early in the course of the most common form, historically known as relapsing-remitting MS (RRMS). Over time, increasing numbers of relapses contribute to disability accumulation (Fig. 18.1). At 19 years of disease duration, 75% of RRMS patients will have developed a more progressive course, whereby their worsening occurs in a steady decline and with fewer relapses (Confavreux and Vukusic 2006), a disease process historically known as secondary progressive MS (SPMS). In contrast, about 15% of patients will have progressive neurologic decline from the start, and this has been referred to as primary progressive MS (PPMS) (Lublin and Reingold 1996). In a 2013 effort to align the nomenclature with the underlying pathological changes, these diagnoses were renamed simply relapsing MS (RMS) and progressive MS (PMS) along with other, more subtle changes in diagnostic terminology that are beyond the scope of this chapter (Lublin et al. 2014).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akiyama, K., Inoue, K., & Senshu, T. (1990). Immunocytochemical demonstration of skeletal muscle type peptidylarginine deiminase in various rat tissues. Cell Biology International Reports, 14, 267–273.

    Article  CAS  PubMed  Google Scholar 

  • Albrechtsen, M., Sorensen, P. S., Gjerris, F., & Bock, E. (1985). High cerebrospinal fluid concentration of glial fibrillary acidic protein (GFAP) in patients with normal pressure hydrocephalus. Journal of the Neurological Sciences, 70, 269–274.

    Article  CAS  PubMed  Google Scholar 

  • Bermel, R. A., Rae-Grant, A. D., & Fox, R. J. (2010). Diagnosing multiple sclerosis at a later age: More than just progressive myelopathy. Multiple Sclerosis, 16, 1335–1340.

    Article  PubMed  Google Scholar 

  • Blauth, K., Owens, G. P., & Bennett, J. L. (2015). The ins and outs of B cells in multiple sclerosis. Frontiers in Immunology, 6, 565.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boggs, J. M., Rangaraj, G., Koshy, K. M., Ackerley, C., Wood, D. D., & Moscarello, M. A. (1999). Highly deiminated isoform of myelin basic protein from multiple sclerosis brain causes fragmentation of lipid vesicles. Journal of Neuroscience Research, 57, 529–535.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, C., Nicholas, A. P., Woodroofe, N., & Cross, A. K. (2014a). Deimination in multiple sclerosis and experimental autoimmune encephalomyelitis. In A. P. Nicholas & S. K. Bhattacharya (Eds.), Protein deimination in human health and disease (pp. 165–185). New York: Springer.

    Chapter  Google Scholar 

  • Bradford, C. M., Cross, A. K., Ramos, I., Haddock, G., Nicholas, A. P., McQuaid, S., & Woodroofe, N. (2014b). Localization of citrullinated proteins in normal appearing white matter and lesions in the central nervous system in multiple sclerosis. Journal of Neuroimmunology, 273, 85–95.

    Article  CAS  PubMed  Google Scholar 

  • Brosnan, C. F., & Raine, C. S. (2013). The astrocyte in multiple sclerosis revisited. Glia, 61, 453–465.

    Article  PubMed  Google Scholar 

  • Brück, W., Porada, P., Poser, S., Rieckmann, P., Hanefeld, F., Kretzschmar, H. A., & Lassmann, H. (1995). Monocyte/macrophage differentiation in early multiple sclerosis lesions. Annals of Neurology, 38, 788–796.

    Article  PubMed  Google Scholar 

  • Cao, L., Goodin, R., Wood, D., Moscarello, M. A., & Whitaker, J. N. (1999). Rapid release and unusual stability of immunodominant peptide 45-89 from citrullinated myelin basic protein. Biochemistry, 38, 6157–6163.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, J. A., Cutter, G. R., Fischer, J. S., Goodman, A. D., Heidenreich, F. R., Kooijmans, M. F., Sandrock, A. W., Rudick, R. A., Simon, J. H., Simonian, N. A., Tsao, E. C., Whitaker, J. N., & IMPACT Investigators. (2002). Benefit of interferon beta-1a on MSFC progression in secondary progressive MS. Neurology, 59, 679–687.

    Article  CAS  PubMed  Google Scholar 

  • Coles, A. J., Cox, A., Le Page, E., Jones, J., Trip, S. A., Deans, J., Seaman, S., Miller, D. H., Hale, G., Waldmann, H., & Compston, D. A. (2006). The window of therapeutic opportunity in multiple sclerosis: Evidence from monoclonal antibody therapy. Journal of Neurology, 253, 98–108.

    Article  PubMed  Google Scholar 

  • Coles, A. J., Twyman, C. L., Arnold, D. L., Cohen, J. A., Confavreux, C., Fox, E. J., Hartung, H. P., Havrdova, E., Selmaj, K. W., Weiner, H. L., Miller, T., Fisher, E., Sandbrink, R., Lake, S. L., Margolin, D. H., Oyuela, P., Panzara, M. A., Compston, D. A., & CARE-MS II investigators. (2012). Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: A randomized controlled phase 3 trial. Lancet, 380, 1829–1839.

    Article  CAS  PubMed  Google Scholar 

  • Compston, A. (2004). ‘The marvellous harmony of the nervous parts’: The origins of multiple sclerosis. Clinical Medicine (London), 4, 346–354.

    Article  Google Scholar 

  • Confavreux, C., & Vukusic, S. (2006). Natural history of multiple sclerosis: A unifying concept. Brain, 129, 606–616.

    Article  PubMed  Google Scholar 

  • Confavreux, C., Vukusic, S., Moreau, T., & Adeleine, P. (2000). Relapses and progression of disability in multiple sclerosis. NEJM, 343, 1430–1438.

    Article  CAS  PubMed  Google Scholar 

  • Dalla Costa, G., Passerini, G., Messina, M. J., Moiola, L., Rodegher, M., Colombo, B., Locatelli, M., Comi, G., Furlan, R., & Martinelli, V. (2015). Clinical significance of the number of oligoclonal bands in patients with clinically isolated syndromes. Journal of Neuroimmunology, 289, 62–67.

    Article  CAS  PubMed  Google Scholar 

  • De Groot, C. J., Langeveld, C. H., Jongenelen, C. A., Montagne, L., Van Der Valk, P., & Dijkstra, C. D. (1997). Establishment of human adult astrocyte cultures derived from postmortem multiple sclerosis and control brain and spinal cord regions: Immunophenotypical and functional characterization. Journal of Neuroscience Research, 49, 342–354.

    Article  PubMed  Google Scholar 

  • De Stefano, N., Narayanan, S., Matthews, P. M., Francis, G. S., Antel, J. P., & Arnold, D. L. (1999). In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of the type seen in multiple sclerosis. Brain, 122, 1933–1939.

    Article  PubMed  Google Scholar 

  • DeLuca, G. C., Ebers, G. C., & Esiri, M. M. (2004). Axonal loss in multiple sclerosis: A pathological survey of the corticospinal and sensory tracts. Brain, 127, 1009–1018.

    Article  CAS  PubMed  Google Scholar 

  • Eng, L. F. (1980). The glial fibrillary acidic (GFA) protein. In R. A. Bradshaw & D. M. Schneider (Eds.), Proteins of the nervous system (pp. 85–117). New York: Raven Press.

    Google Scholar 

  • European Study Group on Interferon-1b in Secondary Progressive MS. (1998). Placebo controlled multicentre randomised trial of interferon-1b in treatment of secondary progressive multiple sclerosis. Lancet, 352, 1491–1497.

    Article  Google Scholar 

  • Gaultier, A., Wu, X., Le Moan, N., Takimoto, S., Mukandala, G., Akassoglou, K., Campana, W. M., & Gonias, S. L. (2009). Low-density lipoprotein receptor-related protein 1 is an essential receptor for myelin phagocytosis. Journal of Cell Science, 122, 1155–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartung, H. P., Gonsette, R., König, N., Kwiecinski, H., Guseo, A., Morrissey, S. P., Krapf, H., Zwingers, T., & M.i.M.S.S. Group. (2002). Mitoxantrone in progressive multiple sclerosis: A placebo-controlled, double-blind, randomized, multicenter trial. Lancet, 360, 2018–2025.

    Article  PubMed  Google Scholar 

  • Hauser, S., & Goodin, D. S. (2015). Multiple sclerosis and other demyelinating diseases. In D. Kasper, A. Fauci, S. Hauser, D. Longo, J. Jameson, & J. Loscalzo (Eds.), Harrison’s principles of internal medicine. New York, NY: McGraw-Hill.

    Google Scholar 

  • Hawker, K., O’Connor, P., Freedman, M. S., Calabresi, P. A., Antel, J., Simon, J., Hauser, S., Waubant, E., Vollmer, T., Panitch, H., Zhang, J., Chin, P., Smith, C. H., & O.T. Group. (2009). Rituximab in patients with primary progressive multiple sclerosis: Results of a randomized double-blind placebo controlled multicenter trial. Annals of Neurology, 66, 460–471.

    Article  CAS  PubMed  Google Scholar 

  • Howell, O. W., Reeves, C. A., Nicholas, R., Carassiti, D., Radotra, B., Gentleman, S. M., Serafini, B., Aloisi, F., Roncaroli, F., Magliozzi, R., & Reynolds, R. (2011). Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain, 134, 2755–2771.

    Article  PubMed  Google Scholar 

  • Inagaki, M., Takahara, H., Nishi, Y., Sugawara, K., & Sato, C. (1989). Ca2+-dependent deimination-induced disassembly of intermediate filaments involves specific modification of the amino-terminal head domain. The Journal of Biological Chemistry, 264, 18119–18127.

    CAS  PubMed  Google Scholar 

  • Jacobs, L. D., Cookfair, D. L., Rudick, R. A., Herndon, R. M., Richert, J. R., Salazar, A. M., Fischer, J. S., Goodkin, D. E., Granger, C. V., Simon, J. H., Alam, J. J., Bartoszak, D. M., Bourdette, D. N., Braiman, J., Brownscheidle, C. M., Coats, M. E., Cohan, S. L., Dougherty, D. S., Kinkel, R. P., Mass, M. K., Munschauer, F. E., Priore, R. L., Pullicino, P. M., Scherokman, B. J., Whitham, R. H., & T.M.S.C.R. Group. (1996). Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Annals of Neurology, 39, 285–294.

    Article  CAS  PubMed  Google Scholar 

  • Kabat, E. A., Moore, D. H., & Landow, H. (1942). An electrophoretic study of the protein components in cerebrospinal fluid and their relationship to the serum proteins. The Journal of Clinical Investigation, 21, 571–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kappos, L., Bar-Or, A., Cree, B., Fox, R., Giovannoni, G., Gold, R., Vermersch, P., Arnould, S., Sidorenko, T., Wolf, C., Wallstroem, E., & Dahlke, F. (2016). Efficacy and safety of siponimod in secondary progressive multiple sclerosis—Results of the placebo controlled, double-blind, phase III EXPAND study. London, UK: ECTRIMS.

    Google Scholar 

  • Kremenchutzky, M., Rice, G. P. A., Baskervile, J., Wingerchuk, D. M., & Ebers, G. C. (2006). The natural history of multiple sclerosis: A geographically based study 9: Observations on the progressive phase of the disease. Brain, 129, 584–594.

    Article  CAS  PubMed  Google Scholar 

  • Kurtzke, J. F. (1983). Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology, 33, 1444–1452.

    Article  CAS  PubMed  Google Scholar 

  • Kutzelnigg, A., & Lassmann, H. (2014). Pathology of multiple sclerosis and related inflammatory demyelinating diseases. Handbook of Clinical Neurology, 122, 15–58.

    Article  PubMed  Google Scholar 

  • Kutzelnigg, A., Lucchinetti, C. F., Stadelmann, C., Brück, W., Rauschka, H., Bergmann, M., Schmidbauer, M., Parisi, J. E., & Lassmann, H. (2005). Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain, 128, 2705–2712.

    Article  PubMed  Google Scholar 

  • Lavery, A. M., Verhey, L. H., & Waldman, A. T. (2014). Outcome measures in relapsing-remitting multiple sclerosis: Capturing disability and disease progression in clinical trials. Multiple Sclerosis International, 2014, 262350.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leary, S. M., Miller, D. H., Stevenson, V. L., Brex, P. A., Chard, D. T., & Thompson, A. J. (2003). Interferon beta-1a in primary progressive MS: An exploratory, randomized, controlled trial. Neurology, 60, 44–51.

    Article  CAS  PubMed  Google Scholar 

  • Lieury, A., Chanal, M., Androdias, G., Reynolds, R., Cavagna, S., Giraudon, P., Confavreux, C., & Nataf, S. (2014). Tissue remodeling in periplaque regions of multiple sclerosis spinal cord lesions. Glia, 62, 1645–1658.

    Article  PubMed  Google Scholar 

  • Lovato, L., Willis, S. N., Rodig, S. J., Caron, T., Almendinger, S. E., Howell, O. W., Reynolds, R., O’Connor, K. C., & Hafler, D. A. (2011). Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain, 134, 534–541.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lublin, F. D., & Reingold, S. C. (1996). Defining the clinical course of multiple sclerosis: Results of an international survey. National Multiple Sclerosis Society (USA) advisory committee on clinical trials of new agents in multiple sclerosis. Neurology, 46, 907–911.

    Article  CAS  PubMed  Google Scholar 

  • Lublin, F. D., Reingold, S. C., Cohen, J. A., Cutter, G. R., Sørensen, P. S., Thompson, A. J., Wolinsky, J. S., Balcer, L. J., Banwell, B., Barkhof, F., Bebo, B., Calabresi, P. A., Clanet, M., Comi, G., Fox, R. J., Freedman, M. S., Goodman, A. D., Inglese, M., Kappos, L., Kieseier, B. C., Lincoln, J. A., Lubetzki, C., Miller, A. E., Montalban, X., O’Connor, P. W., Petkau, J., Pozzilli, C., Rudick, R. R., Sormani, M. P., Stüve, O., Waubant, E., & Polman, C. H. (2014). Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology, 83, 278–286.

    Article  PubMed  PubMed Central  Google Scholar 

  • Malmeström, C., Haghighi, S., Rosengren, L., Andersen, O., & Lycke, J. (2003). Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology, 61, 1720–1725.

    Article  PubMed  Google Scholar 

  • Mastronardi, F. G., Wood, D. D., Mei, J., Raijmakers, R., Tseveleki, V., Dosch, H.-M., Probert, L., Casaccia-Bonnefil, P., & Moscarello, M. A. (2006). Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: A role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation. The Journal of Neuroscience, 26, 11387–11396.

    Article  CAS  PubMed  Google Scholar 

  • Montalban, X., Hemmer, B., Rammohan, K., Giovannoni, G., De Seze, J., Bar-Or, A., Arnold, D. L., Sauter, A., Masterman, D., Fontoura, P., Garren, H., Chin, P., & Wolinsky, J. (2016). Efficacy and safety of ocrelizumab in primary progressive multiple sclerosis: Results of the phase III double-blind, placebo-controlled ORATORIO study. Neurology, 86(Suppl. 16), S49.

    Google Scholar 

  • Morcos, Y., Lee, S. M., & Levin, M. C. (2003). A role for hypertrophic astrocytes and astrocyte precursors in a case of rapidly progressive multiple sclerosis. Multiple Sclerosis, 9, 332–341.

    Article  PubMed  Google Scholar 

  • Moscarello, M. A., Wood, D. D., Ackerly, C., & Boulias, C. (1994). Myelin in multiple sclerosis is developmentally immature. The Journal of Clinical Investigation, 94, 146–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moscarello, M. A., Lei, H., Mastronardi, F. G., Winer, S., Tsui, H., Li, Z., Ackerley, C., Zhang, L., Raijmakers, R., & Wood, D. D. (2013). Inhibition of peptidyl-arginine deiminases reverses protein-hypercitrullination and disease in mouse models of multiple sclerosis. Disease Models & Mechanisms, 6, 467–478.

    Article  CAS  Google Scholar 

  • Musse, A. A., Li, Z., Ackerley, C. A., Bienzle, D., Lei, H., Poma, R., Harauz, G., Moscarello, M. A., & Mastronardi, F. G. (2008). Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system. Disease Models & Mechanisms, 1, 229–240.

    Article  CAS  Google Scholar 

  • Nicholas, A. P., & Bhattacharya, S. K. (2014). Deimination in human health and disease. New York: Springer.

    Book  Google Scholar 

  • Nicholas, A. P., & Whitaker, J. N. (2002). Preparation of a monoclonal antibody to citrullinated epitopes: Its characterization and some applications to immunohistochemistry in human brain. Glia, 37, 328–336.

    Article  PubMed  Google Scholar 

  • Nicholas, A. P., Sambandam, T., Echols, J. D., & Tourtellotte, W. W. (2004). Increased citrullinated glial fibrillary acidic protein in secondary progressive multiple sclerosis. The Journal of Comparative Neurology, 473, 128–136.

    Article  CAS  PubMed  Google Scholar 

  • Nicholas, A. P., Sambandam, T., Echols, J. D., & Barnum, S. R. (2005). Expression of citrullinated proteins in murine experimental autoimmune encephalomyelitis. The Journal of Comparative Neurology, 486, 254–266.

    Article  CAS  PubMed  Google Scholar 

  • Noppe, M., Crols, R., Andries, D., & Lowenthal, A. (1986). Determination in human cerebrospinal fluid of glial fibrillary acidic protein, S-100 and myelin basic protein as indices of non-specific or specific central nervous tissue pathology. Clinica Chimica Acta, 155, 143–150.

    Article  CAS  Google Scholar 

  • Nuyts, A. H., Lee, W. P., Bashir-Dar, R., Berneman, Z. N., & Cools, N. (2013). Dendritic cells in multiple sclerosis: Key players in the immunopathogenesis, key players for new cellular immunotherapies? Multiple Sclerosis, 19, 995–1002.

    Article  CAS  PubMed  Google Scholar 

  • Oguz, K. K., Kurne, A., Aksu, A. O., Karabulut, E., Serdaroglu, A., Teber, S., Haspolat, S., Senbil, N., Kurul, S., & Anlar, B. (2009). Assessment of citrullinated myelin by 1H-MR spectroscopy in early-onset multiple sclerosis. AJNR. American Journal of Neuroradiology, 30, 716–721.

    Article  CAS  PubMed  Google Scholar 

  • Ontaneda, D., Fox, R. J., & Chataway, J. (2015). Clinical trials in progressive multiple sclerosis: Lessons learned and future perspectives. Lancet Neurology, 14, 208–223.

    Article  PubMed  Google Scholar 

  • Orton, S. M., Herrera, B. M., Yee, I. M., Valdar, W., Ramagopalan, S. V., Sadovnick, A. D., Ebers, G. C., & C.C.S. Group. (2006). Sex ratio of multiple sclerosis in Canada: A longitudinal study. Lancet Neurology, 5, 932–936.

    Article  PubMed  Google Scholar 

  • Peterson, J. W., Bö, L., Mörk, S., Chang, A., & Trapp, B. D. (2001). Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Annals of Neurology, 50, 389–400.

    Article  CAS  PubMed  Google Scholar 

  • Petzold, A., Eikelenboom, M. J., Gveric, D., Keir, G., Chapman, M., Lazeron, R. H. C., Cuzner, M. L., Polman, C. H., Uitdehaag, B. M. J., Thompson, E. J., & Giovannoni, G. (2002). Markers for different glial cell responses in multiple sclerosis: Clinical and pathological correlations. Brain, 125, 1462–1473.

    Article  CAS  PubMed  Google Scholar 

  • Piehl, F. (2014). A changing treatment landscape for multiple sclerosis: Challenges and opportunities. Journal of Internal Medicine, 275, 364–381.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, D., Werner, P., & Raine, C. S. (2000). Glutamate excitotoxicity in a model of multiple sclerosis. Nature Medicine, 6, 67–70.

    Article  CAS  PubMed  Google Scholar 

  • Prineas, J. W., Kwon, E. E., Cho, E. S., Sharer, L. R., Barnett, M. H., Oleszak, E. L., Hoffman, B., & Morgan, B. P. (2001). Immunopathology of secondary-progressive multiple sclerosis. Annals of Neurology, 50, 646–657.

    Article  CAS  PubMed  Google Scholar 

  • Pritzker, L. B., Joshi, S., Gowan, J. J., Harauz, G., & Moscarello, M. A. (2000). Deimination of myelin basic protein. 1. Effect of deimination of arginyl residues of myelin basic protein on its structure and susceptibility to digestion by cathepsin D. Biochemistry, 39, 5374–5381.

    Article  CAS  PubMed  Google Scholar 

  • Raijmakers, R., Vogelzangs, J., Croxford, J. L., Wesseling, P., van Venrooij, W. J., & Pruijn, G. J. M. (2005). Citrullination of central nervous system proteins during the development of experimental autoimmune encephalomyelitis. The Journal of Comparative Neurology, 486, 243–253.

    Article  PubMed  Google Scholar 

  • Raijmakers, R., Vogelzangs, J., Raats, J., Panzenbeck, M., Corby, M., Jiang, H., Thibodeau, M., Haynes, N., van Venrooij, W. J., Pruijn, G. J., & Werneburg, B. (2006). Experimental autoimmune encephalomyelitis induction in peptidylarginine deiminase 2 knockout mice. The Journal of Comparative Neurology, 498, 217–226.

    Article  CAS  PubMed  Google Scholar 

  • Rojas, J. I., Tizio, S., Patrucco, L., & Cristiano, E. (2012). Oligoclonal bands in multiple sclerosis patients: Worse prognosis? Neurological Research, 34, 889–892.

    Article  CAS  PubMed  Google Scholar 

  • Secondary Progressive Efficacy Clinical Trial of Recombinant Interferon-beta-1a in MS (SPECTRIMS) Study Group. (2001). Randomized controlled trial of interferon beta-1a in secondary progressive MS: Clinical results. Neurology, 56, 1496–1504.

    Article  Google Scholar 

  • Seewann, A., Vrenken, H., van der Valk, P., Blezer, E. L., Knol, D. L., Castelijns, J. A., Polman, C. H., Pouwels, P. J., Barkhof, F., & Geurts, J. J. (2009). Diffusely abnormal white matter in chronic multiple sclerosis: Imaging and histopathologic analysis. Archives of Neurology, 66, 601–609.

    Article  PubMed  Google Scholar 

  • Segal, B. M., & Stuve, O. (2016). Primary progressive multiple sclerosis—Why we are failing. Lancet, 387, 1032–1034.

    Article  PubMed  Google Scholar 

  • Serafini, B., Rosicarelli, B., Magliozzi, R., Stigliano, E., Capello, E., Mancardi, G. L., & Aloisi, F. (2006). Dendritic cells in multiple sclerosis lesions: Maturation stage, myelin uptake, and interaction with proliferating T cells. Journal of Neuropathology and Experimental Neurology, 65, 124–141.

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew, M. V. (2009). Molecular dissection of reactive astrogliosis and glial scar formation. Trends in Neurosciences, 32, 638–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen, P. S., & Blinkenberg, M. (2016). The potential role for ocrelizumab in the treatment of multiple sclerosis: Current evidence and future prospects. Therapeutic Advances in Neurological Disorders, 9, 44–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The IFNB Multiple Sclerosis Study Group. (1993). Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology, 43, 665–661.

    Article  Google Scholar 

  • The North American Study Group on Interferon beta-1b in Secondary Progressive MS. (2004). Interferon beta-1b in secondary progressive MS: Results from a 3-year controlled study. Neurology, 63, 1788–1795.

    Article  Google Scholar 

  • Trapp, B. D., & Stys, P. K. (2009). Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurology, 8, 280–291.

    Article  CAS  PubMed  Google Scholar 

  • van Horssen, J., Singh, S., van der Pol, S., Kipp, M., Lim, J. L., Peferoen, L., Gerritsen, W., Kooi, E. J., Witte, M. E., Geurts, J. J., de Vries, H. E., Peferoen-Baert, R., van den Elsen, P. J., van der Valk, P., & Amor, S. (2012). Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. Neuroinflammation, 9, 156.

    Google Scholar 

  • Watanabe, K., Akiyama, K., Hikichi, K., Ohtsuka, R., Okuyama, A., & Senshu, T. (1988). Combined biochemical and immunochemical comparison of peptidylarginine deiminases present in various tissues. Biochimica et Biophysica Acta, 966, 375–383.

    Article  CAS  PubMed  Google Scholar 

  • Wolinsky, J. S., Narayana, P. A., O’Connor, P., Coyle, P. K., Ford, C., Johnson, K., Miller, A., Pardo, L., Kadosh, S., Ladkani, D., & P.T.S. Group. (2007). Glatiramer acetate in primary progressive multiple sclerosis: Results of a multinational, multicenter, double-blind, placebo-controlled trial. Annals of Neurology, 61, 14–24.

    Article  CAS  PubMed  Google Scholar 

  • Wood, D. D., Bilbao, J. M., O’Connors, P., & Moscarello, M. A. (1996). Acute multiple sclerosis (Marburg type) is associated with developmentally immature myelin basic protein. Annals of Neurology, 40, 18–24.

    Article  CAS  PubMed  Google Scholar 

  • Wynn, D. R., Rodriguez, M., O’Fallon, W. M., & Kurland, L. T. (1990). A reappraisal of the epidemiology of multiple sclerosis in Olmsted County, Minnesota. Neurology, 40, 780–786.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Meador .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Meador, W.R., Rinker, J.R., Nicholas, A.P. (2017). Deimination in Multiple Sclerosis: The Bad, the Good, and the Ugly. In: Nicholas, A., Bhattacharya, S., Thompson, P. (eds) Protein Deimination in Human Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-58244-3_18

Download citation

Publish with us

Policies and ethics