Skip to main content

Chemical Modification and Mass Spectrometric Approaches for Detection of Brain Protein Deimination

  • Chapter
  • First Online:
Protein Deimination in Human Health and Disease

Abstract

The posttranslational modification of deimination refers to conversion of protein-bound arginine into citrulline. It is frequently detected by monoxime treatment (acid phase 2,3-butanedione and antipyrine reaction) resulting in an adduct formation. We present evidence that deiminated proteins are prone to aggregate formation upon prolonged monoxime exposure. Moreover, the efficiency of adduct formation is nonlinear and dramatically reduced with increasing polypeptide complexity [complete with smaller but progressively decreasing with higher (poly)peptides]. This nonlinearity results in vastly noncomparable detection among different methods such as immunohistochemistry, Western blot, and mass spectrometry. Mass spectrometric detection, based on mass addition of +238 on citrulline moiety with monoxime and +1 change due to deimination without monoxime treatment, corroborates serious limitations in monoxime adduct formation on proteins. Methodological limitations may also interfere with the identification of deiminated proteins as well as their modification sites and, as a consequence, the understanding of the biological role of deimination. We present here methods that alter the sequence of digestion and the combination of chromatographic techniques that collectively reduce complexity and help capture the deiminated peptides. Thin-layer chromatographic methods, together with different enzymatic digestions, can also be potentially routinely used for detection of changes in deimination sites within a given protein in different states of a cell or tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Algeciras, M. E., & Bhattacharya, S. K. (2007). Targeting optic nerve citrullination in glaucoma: A role for protein-arginine deiminase 2 (PAD2) inhibitors. Drugs of the Future, 32, 999–1006.

    Article  Google Scholar 

  • Archibald, R. M. (1944). Determination of citrulline and allantoin and demonstration of citrulline in blood plasma. The Journal of Biological Chemistry, 156, 121–142.

    CAS  Google Scholar 

  • Arnold, J. N., Saldova, R., Hamid, U. M., & Rudd, P. M. (2008). Evaluation of the serum N-linked glycome for the diagnosis of cancer and chronic inflammation. Proteomics, 8, 3284–3293.

    Article  CAS  PubMed  Google Scholar 

  • Bennike, T., Lauridsen, K. B., Olesen, M. K., Andersen, V., Birkelund, S., & Stenballe, A. (2013). Optimizing the identification of citrullinated peptides by mass spectrometry: Utilizing the inability of trypsin to cleave after citrullinated amino acids. Journal of Proteomics & Bioinformatics, 6, 288–295.

    Article  Google Scholar 

  • Bhattacharya, S. K., Sinicrope, B., Rayborn, M. E., Hollyfield, J. G., & Bonilha, V. L. (2008). Age-related reduction in retinal deimination levels in the F344BN rat. Aging Cell, 7, 441–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyde, T. R., & Rahmatullah, M. (1980). Optimization of conditions for the colorimetric determination of citrulline, using diacetyl monoxime. Analytical Biochemistry, 107, 424–431.

    Article  CAS  PubMed  Google Scholar 

  • Bradbury, E. M. (1992). Reversible histone modifications and the chromosome cell cycle. BioEssays, 14, 9–16.

    Article  CAS  PubMed  Google Scholar 

  • Chavanas, S., Mechin, M. C., Nachat, R., Adoue, V., Coudane, F., Serre, G., & Simon, M. (2006). Peptidylarginine deiminases and deimination in biology and pathology: Relevance to skin homeostasis. Journal of Dermatological Science, 44, 63–72.

    Article  CAS  PubMed  Google Scholar 

  • De Ceuleneer, M., Van Steendam, K., Dhaenens, M., & Deforce, D. (2012). In vivo relevance of citrullinated proteins and the challenges in their detection. Proteomics, 12, 752–760.

    Article  PubMed  Google Scholar 

  • Ding, D., Enriquez-Algeciras, M., Dave, K. R., Perez-Pinzon, M., & Bhattacharya, S. K. (2012). The role of deimination in ATP5b mRNA transport in a transgenic mouse model of multiple sclerosis. EMBO Reports, 13, 230–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enriquez-Algeciras, M., Ding, D., Chou, T. H., Wang, J., Padgett, K. R., Porciatti, V., & Bhattacharya, S. K. (2011). Evaluation of a transgenic mouse model of multiple sclerosis with noninvasive methods. Investigative Ophthalmology & Visual Science, 52, 2405–2411.

    Article  CAS  Google Scholar 

  • Enriquez-Algeciras, M., Ding, D., Mastronardi, F. G., Marc, R. E., Porciatti, V., & Bhattacharya, S. K. (2013). Deimination restores inner retinal visual function in murine demyelinating disease. The Journal of Clinical Investigation, 123, 646–656.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ganesan, V., Schmidt, B., Avula, R., Cooke, D., Maggiacomo, T., Tellin, L., Ascherman, D. P., Bruchez, M. P., & Minden, J. (2015). Immuno-proteomics: Development of a novel reagent for separating antibodies from their target proteins. Biochimica et Biophysica Acta, 1854, 592–600.

    Article  CAS  PubMed  Google Scholar 

  • Gyorgy, B., Toth, E., Tarcsa, E., Falus, A., & Buzas, E. I. (2006). Citrullination: A posttranslational modification in health and disease. The International Journal of Biochemistry & Cell Biology, 38, 1662–1677.

    Article  Google Scholar 

  • Harauz, G., & Musse, A. A. (2007). A tale of two citrullines--structural and functional aspects of myelin basic protein deimination in health and disease. Neurochemical Research, 32, 137–158.

    Article  CAS  PubMed  Google Scholar 

  • Holm, A., Rise, F., Sessler, N., Sollid, L. M., Undheim, K., & Fleckenstein, B. (2006). Specific modification of peptide-bound citrulline residues. Analytical Biochemistry, 352, 68–76.

    Article  CAS  PubMed  Google Scholar 

  • Kubota, K., Yoneyama-Takazawa, T., & Ichikawa, K. (2005). Determination of sites citrullinated by peptidylarginine deiminase using 18O stable isotope labeling and mass spectrometry. Rapid Communications in Mass Spectrometry, 19, 683–688.

    Article  CAS  PubMed  Google Scholar 

  • Macek, B., Mann, M., & Olsen, J. V. (2008). Global and site-specific quantitative phosphoproteomics: Principles and applications. Annual Review of Pharmacology and Toxicology, 49, 199–221.

    Article  Google Scholar 

  • Marletta, M. A., Hurshman, A. R., & Rusche, K. M. (1998). Catalysis by nitric oxide synthase. Current Opinion in Chemical Biology, 2, 656–663.

    Article  CAS  PubMed  Google Scholar 

  • Mechin, M. C., Sebbag, M., Arnaud, J., Nachat, R., Foulquier, C., Adoue, V., Coudane, F., Duplan, H., Schmitt, A. M., Chavanas, S., Guerrin, M., Serre, G., & Simon, M. (2007). Update on peptidylarginine deiminases and deimination in skin physiology and severe human diseases. International Journal of Cosmetic Science, 29, 147–168.

    Article  CAS  PubMed  Google Scholar 

  • Nicholas, A. P., & Whitaker, J. N. (2002). Preparation of a monoclonal antibody to citrullinated epitopes: Its characterization and some applications to immunohistochemistry in human brain. Glia, 37, 328–336.

    Article  PubMed  Google Scholar 

  • Nita-Lazar, A., Saito-Benz, H., & White, F. M. (2008). Quantitative phosphoproteomics by mass spectrometry: Past, present, and future. Proteomics, 8, 4433–4443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, N., Solanki, E., Picciani, R., Cavett, V., Caldwell-Busby, J. A., & Bhattacharya, S. K. (2008). Strategies to recover proteins from ocular tissues for proteomics. Proteomics, 8, 1055–1070.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, K., & Bauer, D. L. (2008). Finishing touches: Post-translational modification of protein factors involved in mammalian pre-mRNA 3′ end formation. The International Journal of Biochemistry & Cell Biology, 40, 2384–2396.

    Article  CAS  Google Scholar 

  • Senshu, T., Sato, T., Inoue, T., Akiyama, K., & Asaga, H. (1992). Detection of citrulline residues in deiminated proteins on polyvinylidene difluoride membrane. Analytical Biochemistry, 203, 94–100.

    Article  CAS  PubMed  Google Scholar 

  • Sims, R. J., III, & Reinberg, D. (2008). Is there a code embedded in proteins that is based on post-translational modifications? Nature Reviews. Molecular Cell Biology, 9, 815–820.

    Article  CAS  PubMed  Google Scholar 

  • Stuehr, D. J. (2004). Enzymes of the L-arginine to nitric oxide pathway. The Journal of Nutrition, 134, 2748S–2751S. discussion 2765S–2767S.

    CAS  PubMed  Google Scholar 

  • Vossenaar, E. R., Zendman, A. J., van Venrooij, W. J., & Pruijn, G. J. (2003). PAD, a growing family of citrullinating enzymes: Genes, features and involvement in disease. BioEssays, 25, 1106–1118.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, K., Akiyama, K., Hikichi, K., Ohtsuka, R., Okuyama, A., & Senshu, T. (1988). Combined biochemical and immunochemical comparison of peptidylarginine deiminases present in various tissues. Biochimica et Biophysica Acta, 966, 375–383.

    Article  CAS  PubMed  Google Scholar 

  • Wood, D. D., & Moscarello, M. A. (1989). The isolation, characterization, and lipid-aggregating properties of a citrulline containing myelin basic protein. The Journal of Biological Chemistry, 264, 5121–5127.

    CAS  PubMed  Google Scholar 

  • Zarabian, B., Koushesh, F., & Vassef, A. (1987). Modified methods for measuring citrulline and carbamoyl-beta-alanine with reduced light sensitivity and sucrose interference. Analytical Biochemistry, 166, 113–119.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., & Wang, Y. (2008). High mobility group proteins and their post-translational modifications. Biochimica et Biophysica Acta, 1784, 1159–1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjoy K. Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Enriquez-Algeciras, M., Ding, D., Ascherman, D.P., Bhattacharya, S.K. (2017). Chemical Modification and Mass Spectrometric Approaches for Detection of Brain Protein Deimination. In: Nicholas, A., Bhattacharya, S., Thompson, P. (eds) Protein Deimination in Human Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-58244-3_15

Download citation

Publish with us

Policies and ethics