Skip to main content

Protein Deimination in Aging and Age-Related Diseases with Ocular Manifestations

  • Chapter
  • First Online:

Abstract

Deimination refers to the conversion of protein-bound arginines into citrulline. It has been established as a posttranslational modification due to the lack of any known tRNA carrier for citrulline, as well as the presence of deiminases that are capable of catalyzing this modification in vitro. There is no known enzyme that can revert protein-bound citrulline into arginine, rendering it a relatively long-term modification. Elevated deimination has been found in neuronal tissues in a number of neurodegenerative diseases including multiple sclerosis and glaucoma. Observations in the retina, a tissue where the retinal ganglion cell layer lacks a substantial presence of astroglial cells, demonstrated that elevated and reduced deimination occurs simultaneously in astroglial cells and neurons, respectively. Such opposite effects are expected to complicate therapeutic strategies, necessitating cell-specific delivery systems for perturbation of deiminases that catalyze deimination in neuronal tissues. In this review, we will briefly discuss the occurrence of deimination with normal aging, the importance of deimination in diseases, and the effect of deimination on mRNA transport in neuronal tissue. Elevated deimination induces proteolysis via modification of protein structures, while reduced deimination affects protein synthesis and the outgrowth of dendrites in neurons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Algeciras, M. E., Takahara, H., & Bhattacharya, S. K. (2008). Mechanical stretching elevates peptidyl arginine deiminase 2 expression in astrocytes. Current Eye Research, 33, 994–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R., & Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290, 457–465.

    Article  CAS  PubMed  Google Scholar 

  • Arnon, R., & Aharoni, R. (2007). Neurogenesis and neuroprotection in the CNS--fundamental elements in the effect of Glatiramer acetate on treatment of autoimmune neurological disorders. Molecular Neurobiology, 36, 245–253.

    Article  CAS  PubMed  Google Scholar 

  • Belogurov, A. A., Jr., Kurkova, I. N., Friboulet, A., Thomas, D., Misikov, V. K., Zakharova, M. Y., Suchkov, S. V., Kotov, S. V., Alehin, A. I., Avalle, B., Souslova, E. A., Morse, H. C., III, Gabibov, A. G., & Ponomarenko, N. A. (2008). Recognition and degradation of myelin basic protein peptides by serum autoantibodies: Novel biomarker for multiple sclerosis. Journal of Immunology, 180, 1258–1267.

    Article  CAS  Google Scholar 

  • Bhattacharya, S. K. (2009). Retinal deimination in aging and disease. IUBMB Life, 61, 504–509.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya, S. K., Crabb, J. S., Bonilha, V. L., Gu, X., Takahara, H., & Crabb, J. W. (2006a). Proteomics implicates peptidyl arginine deiminase 2 and optic nerve citrullination in glaucoma pathogenesis. Investigative Ophthalmology & Visual Science, 47, 2508–2514.

    Article  Google Scholar 

  • Bhattacharya, S. K., Crabb, J. S., Bonilha, V. L., Gu, X., Takahara, H., & Crabb, J. W. (2006b). Proteomics implicates peptidyl arginine deiminase 2 and optic nerve citrullination in glaucoma pathogenesis. Investigative Ophthalmology & Visual Science, 47, 2508–2514.

    Article  Google Scholar 

  • Bhattacharya, S. K., Sinicrope, B., Rayborn, M. E., Hollyfield, J. G., & Bonilha, V. L. (2008). Age-related reduction in retinal deimination levels in the F344BN rat. Aging Cell, 7, 441–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonilha, V. L. (2008). Age and disease-related structural changes in the retinal pigment epithelium. Clinical Ophthalmology, 2, 413–424.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonilha, V. L., Shadrach, K. G., Rayborn, M. E., Li, Y., Pauer, G. J., Hagstrom, S. A., Bhattacharya, S. K., & Hollyfield, J. G. (2013). Retinal deimination and PAD2 levels in retinas from donors with age-related macular degeneration (AMD). Experimental Eye Research, 111, 71–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou, S. M., Wang, H. S., & Komai, K. (1996). Colocalization of NOS and SOD1 in neurofilament accumulation within motor neurons of amyotrophic lateral sclerosis: An immunohistochemical study. Journal of Chemical Neuroanatomy, 10, 249–258.

    Article  CAS  PubMed  Google Scholar 

  • Cuthbert, G. L., Daujat, S., Snowden, A. W., Erdjument-Bromage, H., Hagiwara, T., Yamada, M., Schneider, R., Gregory, P. D., Tempst, P., Bannister, A. J., & Kouzarides, T. (2004). Histone deimination antagonizes arginine methylation. Cell, 118, 545–553.

    Article  CAS  PubMed  Google Scholar 

  • Ding, D., Enriquez-Algeciras, M., Dave, K. R., Perez-Pinzon, M., & Bhattacharya, S. K. (2012). The role of deimination in ATP5b mRNA transport in a transgenic mouse model of multiple sclerosis. EMBO Reports, 13, 230–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Souza, C. A., Wood, D. D., She, Y. M., & Moscarello, M. A. (2005). Autocatalytic cleavage of myelin basic protein: An alternative to molecular mimicry. Biochemistry, 44, 12905–12913.

    Article  PubMed  Google Scholar 

  • Enriquez-Algeciras, M., Ding, D., Mastronardi, F. G., Marc, R. E., Porciatti, V., & Bhattacharya, S. K. (2013). Deimination restores inner retinal visual function in murine demyelinating disease. The Journal of Clinical Investigation, 123, 646–656.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grant, J. E., Hu, J., Liu, T., Jain, M. R., Elkabes, S., & Li, H. (2007). Post-translational modifications in the rat lumbar spinal cord in experimental autoimmune encephalomyelitis. Journal of Proteome Research, 6, 2786–2791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hageman, G. S., Mullins, R. F., Russell, S. R., Johnson, L. V., & Anderson, D. H. (1999). Vitronectin is a constituent of ocular drusen and the vitronectin gene is expressed in human retinal pigmented epithelial cells. FASEB Journal, 13, 477–484.

    CAS  PubMed  Google Scholar 

  • Hageman, G. S., Luthert, P. J., Victor Chong, N. H., Johnson, L. V., Anderson, D. H., & Mullins, R. F. (2001). An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Progress in Retinal and Eye Research, 20, 705–732.

    Article  CAS  PubMed  Google Scholar 

  • Heriot, W. J., Henkind, P., Bellhorn, R. W., & Burns, M. S. (1984). Choroidal neovascularization can digest Bruch’s membrane. A prior break is not essential. Ophthalmology, 91, 1603–1608.

    Article  CAS  PubMed  Google Scholar 

  • Keilhoff, G., Prell, T., Langnaese, K., Mawrin, C., Simon, M., Fansa, H., & Nicholas, A. P. (2008). Expression pattern of peptidylarginine deiminase in rat and human Schwann cells. Developmental Neurobiology, 68, 101–114.

    Article  CAS  PubMed  Google Scholar 

  • Lange, S., Gogel, S., Leung, K. Y., Vernay, B., Nicholas, A. P., Causey, C. P., Thompson, P. R., Greene, N. D., & Ferretti, P. (2011). Protein deiminases: New players in the developmentally regulated loss of neural regenerative ability. Developmental Biology, 355, 205–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louw, C., Gordon, A., Johnston, N., Mollatt, C., Bradley, G., & Whiteley, C. G. (2007). Arginine deiminases: Therapeutic tools in the etiology and pathogenesis of Alzheimer’s disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 22, 121–126.

    Google Scholar 

  • Maruyama, M., Higuchi, M., Takaki, Y., Matsuba, Y., Tanji, H., Nemoto, M., Tomita, N., Matsui, T., Iwata, N., Mizukami, H., Muramatsu, S., Ozawa, K., Saido, T. C., Arai, H., & Sasaki, H. (2005). Cerebrospinal fluid neprilysin is reduced in prodromal Alzheimer’s disease. Annals of Neurology, 57, 832–842.

    Google Scholar 

  • Mastronardi, F. G., Ackerley, C. A., Arsenault, L., Roots, B. I., & Moscarello, M. A. (1993). Demyelination in a transgenic mouse: A model for multiple sclerosis. Journal of Neuroscience Research, 36, 315–324.

    Article  CAS  PubMed  Google Scholar 

  • Mastronardi, F. G., Noor, A., Wood, D. D., Paton, T., & Moscarello, M. A. (2007). Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated. Journal of Neuroscience Research, 85, 2006–2016.

    Article  CAS  PubMed  Google Scholar 

  • Moscarello, M. A., Wood, D. D., Ackerley, C., & Boulias, C. (1994). Myelin in multiple sclerosis is developmentally immature. The Journal of Clinical Investigation, 94, 146–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musse, A. A., Boggs, J. M., & Harauz, G. (2006). Deimination of membrane-bound myelin basic protein in multiple sclerosis exposes an immunodominant epitope. Proceedings of the National Academy of Sciences of the United States of America, 103, 4422–4427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair, A., Frederick, T. J., & Miller, S. D. (2008). Astrocytes in multiple sclerosis: A product of their environment. Cellular and Molecular Life Sciences, 65, 2702–2720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima, K., Hagiwara, T., & Yamada, M. (2002). Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. The Journal of Biological Chemistry, 277, 49562–49568.

    Article  CAS  PubMed  Google Scholar 

  • Nicholas, A. P., & Whitaker, J. N. (2002). Preparation of a monoclonal antibody to citrullinated epitopes: Its characterization and some applications to immunohistochemistry in human brain. Glia, 37, 328–336.

    Article  PubMed  Google Scholar 

  • Nicholas, A. P., Sambandam, T., Echols, J. D., & Barnum, S. R. (2005). Expression of citrullinated proteins in murine experimental autoimmune encephalomyelitis. Journal of Comparative Neurology, 486, 254–266.

    Article  CAS  PubMed  Google Scholar 

  • Nicholas, A. P., Lu, L., Heaven, M., Kadish, I., van Groen, T., Accaviti-Loper, M. A., Wewering, S., Kofskey, D., Gambetti, P., & Brenner, M. (2014). Ongoing studies of demination in neurodegenerative diseases using the F95 antibody. In A. P. Nicholas & S. K. Bhattacharya (Eds.), Protein deimination in human health and disease (pp. 257–280). New York: Springer.

    Google Scholar 

  • Noseworthy, J. H., Lucchinetti, C., Rodriguez, M., & Weinshenker, B. G. (2000). Multiple sclerosis. The New England Journal of Medicine, 343, 938–952.

    Article  CAS  PubMed  Google Scholar 

  • Penfold, P., Killingsworth, M., & Sarks, S. (1984). An ultrastructural study of the role of leucocytes and fibroblasts in the breakdown of Bruch’s membrane. Australian Journal of Ophthalmology, 12, 23–31.

    Article  CAS  PubMed  Google Scholar 

  • Pritzker, L. B., Joshi, S., Gowan, J. J., Harauz, G., & Moscarello, M. A. (2000). Deimination of myelin basic protein. 1. Effect of deimination of arginyl residues of myelin basic protein on its structure and susceptibility to digestion by cathepsin D. Biochemistry, 39, 5374–5381.

    Article  CAS  PubMed  Google Scholar 

  • Raijmakers, R., Zendman, A. J., Egberts, W. V., Vossenaar, E. R., Raats, J., Soede-Huijbregts, C., Rutjes, F. P., van Veelen, P. A., Drijfhout, J. W., & Pruijn, G. J. (2007). Methylation of arginine residues interferes with citrullination by peptidylarginine deiminases in vitro. Journal of Molecular Biology, 367, 1118–1129.

    Article  CAS  PubMed  Google Scholar 

  • Rohrbach, A. S., Slade, D. J., Thompson, P. R., & Mowen, K. A. (2012). Activation of PAD4 in NET formation. Frontiers in Immunology, 3, 360.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scofield, R. H. (2004). Autoantibodies as predictors of disease. Lancet, 363, 1544–1546.

    Article  CAS  PubMed  Google Scholar 

  • Senshu, T., Sato, T., Inoue, T., Akiyama, K., & Asaga, H. (1992). Detection of citrulline residues in deiminated proteins on polyvinylidene difluoride membrane. Analytical Biochemistry, 203, 94–100.

    Article  CAS  PubMed  Google Scholar 

  • Takahara, H., Kusubata, M., Tsuchida, M., Kohsaka, T., Tagami, S., & Sugawara, K. (1992). Expression of peptidylarginine deiminase in the uterine epithelial cells of mouse is dependent on estrogen. The Journal of Biological Chemistry, 267, 520–525.

    CAS  PubMed  Google Scholar 

  • Vossenaar, E. R., Zendman, A. J., van Venrooij, W. J., & Pruijn, G. J. (2003). PAD, a growing family of citrullinating enzymes: Genes, features and involvement in disease. BioEssays, 25, 1106–1118.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Wysocka, J., Sayegh, J., Lee, Y. H., Perlin, J. R., Leonelli, L., Sonbuchner, L. S., McDonald, C. H., Cook, R. G., Dou, Y., Roeder, R. G., Clarke, S., Stallcup, M. R., Allis, C. D., & Coonrod, S. A. (2004). Human PAD4 regulates histone arginine methylation levels via demethylimination. Science, 306, 279–283.

    Article  CAS  PubMed  Google Scholar 

  • Wood, D. D., Ackerley, C. A., Brand, B., Zhang, L., Raijmakers, R., Mastronardi, F. G., & Moscarello, M. A. (2008). Myelin localization of peptidylarginine deiminases 2 and 4: Comparison of PAD2 and PAD4 activities. Laboratory Investigation, 88, 354–364.

    Article  CAS  PubMed  Google Scholar 

  • Ziemssen, T. (2005). Modulating processes within the central nervous system is central to therapeutic control of multiple sclerosis. Journal of Neurology, 252(Suppl 5), 38–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera L. Bonilha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ding, D., Enriquez-Algeciras, M., Bhattacharya, S.K., Bonilha, V.L. (2017). Protein Deimination in Aging and Age-Related Diseases with Ocular Manifestations. In: Nicholas, A., Bhattacharya, S., Thompson, P. (eds) Protein Deimination in Human Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-58244-3_14

Download citation

Publish with us

Policies and ethics