Skip to main content

Protein Deimination in Protein Misfolding Disorders: Modeled in Human Induced Pluripotent Stem Cells (iPSCs)

  • Chapter
  • First Online:
Protein Deimination in Human Health and Disease

Abstract

Neurodegenerative diseases present an enormous challenge to medicine, and the need for biomarker discovery and novel drug-directed strategies are thus of high priority. A common disease feature is the accumulation of misfolded proteins, which leads to cellular stress responses, including raised calcium levels, and results in neuronal death. Peptidylarginine deiminases (PADs) are calcium-activated enzymes that cause structural changes and misfolding in target proteins that further contribute to neuronal death. As we have previously shown that pharmacological PAD inhibition is neuroprotective in animal models of acute CNS injury, we propose that PAD inhibitors offer a novel interceptive treatment to reduce neuronal damage caused by accumulative PAD-mediated protein misfolding in neurodegenerative disease progression. The use of human induced pluripotent stem cell (iPSC) cultures may prove an invaluable tool to elucidate the contribution of protein deimination to neurodegenerative pathologies and to test the feasibility of selected PAD inhibitors to slow down disease progression. We have utilized fibroblast-derived iPSC neuronal cultures from patients carrying neurodegenerative disease-causing mutations for amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Parkinson’s disease (PD) and found increased levels of deiminated proteins compared to non-mutated control neurons. Our findings support that human iPSC cultures can be used as a functional tool for modeling protein deimination in neurodegenerative disease and may be useful in future testing of drug-directed PAD inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya, N. K., Nagele, E. P., Han, M., et al. (2012). Neuronal PAD4 expression and protein citrullination: Possible role in production of autoantibodies associated with neurodegenerative disease. Journal of Autoimmunity, 38(4), 369–380.

    Article  CAS  PubMed  Google Scholar 

  • Agosta, F., Dalla Libera, D., et al. (2014). Myeloid microvesicles in cerebrospinal fluid are associated with myelin damage and neuronal loss in mild cognitive impairment and Alzheimer disease. Annals of Neurology, 76(6), 813–825.

    Article  CAS  PubMed  Google Scholar 

  • Beal, M. F. (2005). Mitochondria take center stage in aging and neurodegeneration. Annals of Neurology, 58(4), 495–505.

    Article  CAS  PubMed  Google Scholar 

  • Bellaver, B., Souza, D. G., Souza, D. O., & Quincozes-Santos, A. (2016). Hippocampal astrocyte cultures from adult and aged rats reproduce changes in glial functionality observed in the aging brain. Molecular Neurobiology. doi:10.1007/s12035-016-9880-8.

  • Borchelt, D. R., Thinakaran, G., Eckman, C. B., et al. (1996). Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβ1-42/1-40 ratio in vitro and in vivo. Neuron, 17, 1005–1013.

    Article  CAS  PubMed  Google Scholar 

  • Bozdag, M., Dreker, T., Henry, C., et al. (2013). Novel small molecule protein arginine deiminase 4 (PAD4) inhibitors. Bioorganic & Medicinal Chemistry Letters, 23(3), 715–719.

    Article  CAS  Google Scholar 

  • Bradford, C. M., Ramos, I., Cross, A. K., et al. (2014). Localisation of citrullinated proteins in normal appearing white matter and lesions in the central nervous system in multiple sclerosis. Journal of Neuroimmunology, 273(1–2), 85–95.

    Article  CAS  PubMed  Google Scholar 

  • Burgos, K., Malenica, I., Metpally, R., et al. (2014). Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PloS One, 9(5), e94839.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cherry, A. B., & Daley, G. Q. (2012). Reprogramming cellular identity for regenerative medicine. Cell, 148(6), 1110–1122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darbro, B. W., Mahajan, V. B., Gakhar, L., et al. (2013). Mutations in extracellular matrix genes NID1 and LAMC1 cause autosomal dominant Dandy-Walker malformation and occipital cephaloceles. Human Mutation, 34(8), 1075–1079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devine, M. J., Ryten, M., Vodicka, P., et al. (2011). Parkinson’s disease induced pluripotent stem cells with triplication of the α-synuclein locus. Nature Communications, 2, 440.

    Article  PubMed  PubMed Central  Google Scholar 

  • Durdiaková, J., Warrier, V., Banerjee-Basu, S., et al. (2014). STX1A and Asperger syndrome: A replication study. Molecular Autism, 15(1), 14.

    Article  Google Scholar 

  • Ferretti, P., U, K. P., Vagaska, B., et al. (2013). Discovery of a structurally novel, drug-like and potent inhibitor of peptidylarginine deiminase. Medicinal Chemistry Communications, 4, 1109–1113.

    Article  CAS  Google Scholar 

  • Ferretti, P., Lange, S., U, K. P., & Raivich, G. (2014). Chapter 15, Deimination in the developing CNS - role in its response to traumatic and hypoxic injury. In S. Bhattacharya & A. Nicholas (Eds.), Protein deimination in human health and disease. New York: Springer. ISBN 978-1-4614-8316-8.

    Google Scholar 

  • Gyorgy, B., Toth, E., Tarcsa, E., et al. (2006). Citrullination: A posttranslational modification in health and disease. The International Journal of Biochemistry & Cell Biology, 38, 1662–1677.

    Article  Google Scholar 

  • Halliday, M., & Mallucci, G. R. (2014). Targeting the unfolded protein response in neurodegeneration: A new approach to therapy. Neuropharmacology, 76(Pt A), 169–174.

    Article  CAS  PubMed  Google Scholar 

  • Hampel, H., Frank, R., Broich, K., et al. (2010). Biomarkers for Alzheimer’s disease: Academic, industry and regulatory perspectives. Nature Reviews. Drug Discovery, 9(7), 560–574.

    Article  CAS  PubMed  Google Scholar 

  • Hawkes, C. A., Gatherer, M., Sharp, M. M., et al. (2013). Regional differences in the morphological and functional effects of aging on cerebral basement membranes and perivascular drainage of amyloid-β from the mouse brain. Aging Cell, 12(2), 224–236.

    Article  CAS  PubMed  Google Scholar 

  • Ishigami, A., Ohsawa, T., Hiratsuka, M., et al. (2005). Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer’s disease. Journal of Neuroscience Research, 80, 120–128.

    Article  CAS  PubMed  Google Scholar 

  • Ishigami, A., Choi, E.-K., Kim, S., et al. (2014). Chapter 13, Deimination in Alzheimer’s disease. In S. Bhattacharya & A. Nicholas (Eds.), Protein deimination in human health and disease. New York: Springer. ISBN 978-1-4614-8316-8.

    Google Scholar 

  • Ishigami, A., Masutomi, H., Handa, S., et al. (2015). Mass spectrometric identification of citrullination sites and immunohistochemical detection of citrullinated glial fibrillary acidic protein in Alzheimer's disease brains. Journal of Neuroscience Research, 93(11), 1664–1674.

    Article  CAS  PubMed  Google Scholar 

  • Jang, B., Jeon, Y. C., Choi, J. K., et al. (2012). Peptidylarginine deiminase modulates the physiological roles of enolase via citrullination: Links between altered multifunction of enolase and neurodegenerative diseases. Biochemical Journal, 445(2), 183–192.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, P., Turola, E., Ruiz, A., et al. (2014). Microglia convert aggregated amyloid-β into neurotoxic forms through the shedding of microvesicles. Cell Death and Differentiation, 21(4), 582–593.

    Article  CAS  PubMed  Google Scholar 

  • Kholia, S., Jorfi, S., Thompson, P. R., et al. (2015). A novel role for peptidylarginine deiminases in microvesicle release reveals therapeutic potential of PAD inhibition in sensitizing prostate cancer cells to chemotherapy. Journal of Extracellular Vesicles, 4, 26192.

    Article  PubMed  Google Scholar 

  • Krüger, J., Hinttala, R., Majamaa, K., & Remes, A. M. (2010). Mitochondrial DNA haplogroups in early-onset Alzheimer’s disease and frontotemporal lobar degeneration. Molecular Neurodegeneration, 5, 8. doi:10.1186/1750-1326-5-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lange, S., Gögel, S., Leung, K. Y., et al. (2011). Protein deiminases: New players in the developmentally regulated loss of neural regenerative ability. Developmental Biology, 355, 205–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange, S., Rocha-Ferreira, E., Thei, L., et al. (2014). Peptidylarginine deiminases: Novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates. Journal of Neurochemistry, 130, 555–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, Y., Arita, K., Bhatia, M., et al. (2006). Inhibitors and inactivators of protein arginine deiminase 4: Functional and structural characterization. Biochemistry, 45(39), 11727–11736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastroeni, D., Grover, A., Delvaux, E., et al. (2011). Epigenetic mechanisms in Alzheimer’s disease. Neurobiology of Aging, 32(7), 1161–1180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastronardi, F. G., Wood, D. D., Mei, J., et al. (2006). Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: A role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation. The Journal of Neuroscience, 26, 11387–11396.

    Article  CAS  PubMed  Google Scholar 

  • Mohlake, P., & Whiteley, C. G. (2010). Arginine metabolising enzymes as therapeutic tools for Alzheimer’s disease: Peptidyl arginine deiminase catalyses fibrillogenesis of beta-amyloid peptides. Molecular Neurobiology, 41(2–3), 149–158.

    Article  CAS  PubMed  Google Scholar 

  • Moreno, T. A., & Bronner-Fraser, M. (2005). Noelins modulate the timing of neuronal differentiation during development. Developmental Biology, 288(2), 434–447.

    Article  CAS  PubMed  Google Scholar 

  • Moscarello, M. A., Wood, D. D., Ackerley, C., & Boulias, C. (1994). Myelin in multiple sclerosis is developmentally immature. The Journal of Clinical Investigation, 94(1), 146–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musse, A. A., Li, Z., Ackerley, C. A., et al. (2008). Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system. Disease Models & Mechanisms, 1(4–5), 229–240.

    Article  CAS  Google Scholar 

  • Nagele, R. G., Clifford, P. M., Siu, G., et al. (2011). Brain-reactive autoantibodies prevalent in human sera increase intraneuronal amyloid-beta1-42 deposition. Journal of Alzheimer’s Disease, 25, 605e22.

    Google Scholar 

  • Nicholas, A. P. (2011). Dual immunofluorescence study of citrullinated proteins in Parkinson diseased substantia nigra. Neuroscience Letters, 495, 26–29.

    Article  CAS  PubMed  Google Scholar 

  • Nicholas, A. P. (2013). Dual immunofluorescence study of citrullinated proteins in Alzheimer diseased frontal cortex. Neuroscience Letters, 545, 107–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholas, A. P., & Whitaker, J. N. (2002). Preparation of a monoclonal antibody to citrullinated epitopes: Its characterization and some applications to immunohistochemistry in human brain. Glia, 37, 328–336.

    Article  PubMed  Google Scholar 

  • Nicholas, A. P., King, J. L., Sambandam, T., et al. (2003). Immunohistochemical localization of citrullinated proteins in adult rat brain. Journal of Comparative Neurology, 459, 251–266.

    Article  CAS  PubMed  Google Scholar 

  • Nicholas, A. P., Sambandam, T., Echols, J. D., et al. (2004). Increased citrullinated glial fibrillary acidic protein in secondary progressive multiple sclerosis. Journal of Comparative Neurology, 473, 128–136.

    Article  CAS  PubMed  Google Scholar 

  • Nicholas, A. P., Sambandam, T., Echols, J. D., et al. (2005). Journal of Comparative Neurology, 486, 254–266.

    Article  CAS  PubMed  Google Scholar 

  • Nicholas, A. P., Lu, L., Heaven, M., et al. (2014). Chapter 14, ongoing studies of deimination in neurodegenerative diseases using the F95 antibody. In S. Bhattacharya & A. Nicholas (Eds.), Protein deimination in human health and disease. New York: Springer. ISBN 978-1-4614-8316-8.

    Chapter  Google Scholar 

  • Payne, N. L., Sylvain, A., O’Brien, C., et al. (2015). Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases. New Biotechnology, 32(1), 212–228.

    Article  CAS  PubMed  Google Scholar 

  • Poorkaj, P., Bird, T. D., Wijsman, E., et al. (1998). Tau is a candidate gene for chromosome 17 frontotemporal dementia. Annals of Neurology, 43, 815–825.

    Article  CAS  PubMed  Google Scholar 

  • Sandoe, J., & Eggan, K. (2013). Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nature Neuroscience, 16(7), 780–789.

    Article  CAS  PubMed  Google Scholar 

  • Shi, Y., Kirwan, P., & Livesey, F. (2012). Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nature Protocols, 7(10), 1836–1846.

    Article  CAS  PubMed  Google Scholar 

  • Slack, J. L., Causey, C. P., & Thompson, P. R. (2011). Protein arginine deiminase 4: A target for an epigenetic cancer therapy. Cellular and Molecular Life Sciences, 68(4), 709–702.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian, V., Knight, J. S., Parelkar, S., et al. (2015). Design, synthesis, and biological evaluation of tetrazole analogs of cl-amidine as protein arginine deiminase inhibitors. Journal of Medicinal Chemistry, 58(3), 1337–1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomlinson, P. R., Zheng, Y., Fischer, R., et al. (2015). Identification of distinct circulating exosomes in Parkinson’s disease. Annals of Clinical Translational Neurology, 2(4), 353–361.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trabocchi, A., Pala, N., Krimmelbein, I., et al. (2015). Peptidomimetics as protein arginine deiminase 4 (PAD4) inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 30(3), 466–471.

    Article  CAS  PubMed  Google Scholar 

  • Vossenaar, E. R., Nijenhuis, S., Helsen, M. M., et al. (2003). Citrullination of synovial proteins in murine models of rheumatoid arthritis. Arthritis and Rheumatism, 48, 2489–2500.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Wysocka, J., Sayegh, J., et al. (2004). Human PAD4 regulates histone arginine methylation levels via demethylimination. Science, 306, 279–283.

    Article  CAS  PubMed  Google Scholar 

  • Wei, L., Wasilewski, E., Chakka, S. K., et al. (2013). Novel inhibitors of protein arginine deiminase with potential activity in multiple sclerosis animal model. Journal of Medicinal Chemistry, 56(4), 1715–1722.

    Article  CAS  PubMed  Google Scholar 

  • Wood, D. D., Ackerley, C. A., Brand, B., et al. (2008). Myelin localization of peptidylarginine deiminases 2 and 4: Comparison of PAD2 and PAD4 activities. Laboratory Investigation, 88(4), 354–364.

    Article  CAS  PubMed  Google Scholar 

  • Wray, S., Self, M., NINDS Parkinson’s Disease iPSC Consortium, et al. (2012). Creation of an open-access, mutation-defined fibroblast resource for neurological disease research. PloS One, 7(8), e43099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, T., Fan, X., Tan, Y., et al. (2014). Expression of PHB2 in rat brain cortex following traumatic brain injury. International Journal of Molecular Sciences, 15(2), 3299–3318.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, Y., Kim, J., Kim, H. Y., et al. (2015). Amyloid-β oligomers may impair SNARE-mediated exocytosis by direct binding to Syntaxin 1a. Cell Reports, 12(8), 1244–1251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrun Lange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lange, S., Wray, S., Devine, M., Matarin, M., Hardy, J. (2017). Protein Deimination in Protein Misfolding Disorders: Modeled in Human Induced Pluripotent Stem Cells (iPSCs). In: Nicholas, A., Bhattacharya, S., Thompson, P. (eds) Protein Deimination in Human Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-58244-3_13

Download citation

Publish with us

Policies and ethics