Skip to main content

The Scheldt Estuary: An Overview of the Morphodynamics of Intertidal Areas

  • Chapter
  • First Online:
Landscapes and Landforms of Belgium and Luxembourg

Part of the book series: World Geomorphological Landscapes ((WGLC))

  • 2801 Accesses

Abstract

Along the Scheldt estuary, intertidal areas such as intertidal flats and intertidal marshes have important functions including flood water storage, water quality regulation and provision of important habitats. The functioning of intertidal marshes is determined by short-term geomorphic processes: the marshes are regularly flooded and sediments are deposited on the marsh surface, a process through which marshes gain elevation. The spatial patterns and rates of sedimentation on marshes are mainly governed by temporal and spatial variations in tidal characteristics and flow patterns, which are strongly influenced by marsh vegetation, leading to a micro-topography typical for tidal marshes. Strong human modifications of the Scheldt estuary by embankments, channelization and dredging have been increasing the tidal range, especially in the more upstream regions. As part of an integrated management plan for the Scheldt estuary—the so-called Sigmaplan in Flanders, new intertidal areas have been created and more than 2000 ha are planned to be ready by 2030. This intertidal flat and marsh creation is realized in some cases as flood control areas with a reduced tidal exchange between the estuary and the flood control area, where the geomorphologic processes are comparable to natural marshes, although we note some important differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JRL (2000) Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quat Sci Rev 19:1155–1231. doi:10.1016/S0277-3791(99)00034-7

    Article  Google Scholar 

  • Bogemans F (1993) Quaternary geological mapping on basis of sedimentary properties in the eastern branch of the Flemisch Valley. Mem Geol Surv Belgium 35

    Google Scholar 

  • Bogemans F, Meylemans E, Jacops J, Perdaen Y, Storme A, Verdurmen I, Deforce K (2012) The evolution of the sedimentary environment in the lower River Scheldt valley (Belgium) during the last 13,000 a BP. Geol Belgica 15:105–112

    Google Scholar 

  • Bouma TJ, De Vries MB, Low E, Kusters L, Herman PMJ, Tánczos IC, Temmerman S, Hesselink A, Meire P, van Regenmortel S (2005a) Flow hydrodynamics on a mudflat and in salt marsh vegetation: identifying general relationships for habitat characterisations. Hydrobiologia 540:259–274. doi:10.1007/s10750-004-7149-0

  • Bouma TJ, De Vries MB, Low E, Peralta G, Tánczos IC, Van De Koppel J, Herman PMJ (2005b) Trade-offs related to ecosystem engineering: a case study on stiffness of emerging macrophytes. Ecology 86:2187–2199. doi:10.1890/04-1588

    Article  Google Scholar 

  • Bouma TJ, van Duren LA, Temmerman S, Claverie T, Blanco-Garcia A, Ysebaert T, Herman PMJ (2007) Spatial flow and sedimentation patterns within patches of epibenthic structures: Combining field, flume and modelling experiments. Cont Shelf Res 27:1020–1045. doi:10.1016/j.csr.2005.12.019

  • Bouma TJ, Temmerman S, van Duren LA, Martini E, Vandenbruwaene W, Callaghan DP, Balke T, Biermans G, Klaassen PC, van Steeg P, Dekker F, van de Koppel J, de Vries MB, Herman PMJ (2013) Organism traits determine the strength of scale-dependent bio-geomorphic feedbacks: a flume study on three intertidal plant species. Geomorphology 180–181:57–65. doi:10.1016/j.geomorph.2012.09.005

    Article  Google Scholar 

  • Brys R, Ysebaert T, Escaravage V, Van Damme S, Van Braeckel A, Vandevoorde B, Van Den Bergh E (2005) Afstemmen van referentiecondities en evaluatiesystemen in functie van de KRW : afleiden en beschrijven van typespecifieke referentieomstandigheden en/of MEP in elk Vlaams overgangswatertype vanuit de—overeenkomstig de KRW—ontwikkelde beoordelingssystemen voor biologische kwaliteitselementen. Report of the Research Institute for Nature and Forest (IN.O.2005.7).

    Google Scholar 

  • Cahoon D, Reed D (1995) Relationships among marsh surface topography, hydroperiod, and soil accretion in a deteriorating Louisiana salt marsh. J Coast Res 11:357–369.

    Google Scholar 

  • Carniello L, Defina A, D’Alpaos L (2009) Morphological evolution of the Venice lagoon: evidence from the past and trend for the future. J Geophys Res Earth Surf 114:1–10. doi:10.1029/2008JF001157

    Article  Google Scholar 

  • Christiansen T, Wiberg PLL, Milligan TGG (2000) Flow and sediment transport on a tidal salt marsh. Estuar Coast Shelf Sci 50:315–331. doi:10.1006/ecss.2000.0548

  • Coen I (2008) De eeuwige Schelde? Ontstaan en ontwikkeling van de Schelde. Report of Flanders Hydraulics Research. Borgerhout

    Google Scholar 

  • Cox T, Maris T, De Vleeschauwer P, De Mulder T, Soetaert K, Meire P (2006) Flood control areas as an opportunity to restore estuarine habitat. Ecol Eng 28:55–63. doi:10.1016/j.ecoleng.2006.04.001

    Article  Google Scholar 

  • D’Alpaos A, Lanzoni S, Mudd SM, Fagherazzi S (2006) Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels. Estuar Coast Shelf Sci 69:311–324. doi:10.1016/j.ecss.2006.05.002

    Article  Google Scholar 

  • De Moor G (1983) Cryogenic structures in the Weichselian deposits of Northern Belgium and their significance. Polarforschung 53:79–86

    Google Scholar 

  • De Smedt P (1969) Geomorfologie van slikken en schorren langsheen het Schelde-estuarium op Belgisch grondgebied. Acta Geogr Lovan 7:49–63

    Google Scholar 

  • Du Laing G, Vandecasteele B, De Grauwe P, Moors W, Lesage E, Meers E, Tack FMG, Verloo MG (2007) Factors affecting metal concentrations in the upper sediment layer of intertidal reedbeds along the river Scheldt. J Environ Monit 9:449. doi:10.1039/b618772b

    Article  Google Scholar 

  • Fettweis M, Sas M, Monbaliu J (1998) Seasonal, neap-spring and tidal variation of cohesive sediment concentration in the Scheldt Estuary, Belgium. Estuar Coast Shelf Sci 47:21–36. doi:10.1006/ecss.1998.0338

    Article  Google Scholar 

  • Friedrichs CT, Perry JE (2001) Tidal salt marsh morphodynamics: a synthesis. J Coast Res SI 27:7–37

    Google Scholar 

  • Gribsholt BTH, Boschker S, Struyf E, Andersson M, Tramper A, De Brabandere L, van Damme S, Brion N, Meire P, Dehairs F, Middelburg JJ, Heip CHR (2005) Nitrogen processing in a tidal freshwater marsh: a whole-ecosystem 15 N labeling study. Limnol Oceanogr 50:1945–1959. doi:10.4319/lo.2005.50.6.1945

  • Kearney MS, Grace RE, Stevenson JC (1988) Marsh loss in Nanticoke Estuary, Chesapeake Bay. Geogr Rev 78:205. doi:10.2307/214178

    Article  Google Scholar 

  • Kiden P (1991) The lateglacial and holocene evolution of the middle and lower River Scheldt, Belgium. In: Starkel L, Gregory KJ, Thornes JB (eds) Temperate palaeohydrology. Fluvial processes in the temperate zone during the Last 15,000 Years, pp 283–299

    Google Scholar 

  • Kiden P (2006) Schelde in Belgie en Zuidwest-Nederland na de laatste ijstijd. Belgeo 3:279–294

    Article  Google Scholar 

  • Kirwan ML, Megonigal JP (2013) Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504:53–60. doi:10.1038/nature12856

    Article  Google Scholar 

  • Leonard LA, Reed DJ (2002) Hydrodynamics and sediment transport through tidal marsh canopies. J Coast Res 36:459–469

    Google Scholar 

  • Leonard LA, Croft AL (2006) The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuar Coast Shelf Sci 69:325–336. doi:10.1016/j.ecss.2006.05.004

    Article  Google Scholar 

  • Maris T, Cox T, Temmerman S, De Vleeschauwer P, Van Damme S, De Mulder T, Van den Bergh E, Meire P (2007) Tuning the tide: creating ecological conditions for tidal marsh development in a flood control area. Hydrobiologia 588:31–43. doi:10.1007/s10750-007-0650-5

    Article  Google Scholar 

  • Meire P, Ysebaert T, Van Damme S, Van Den Bergh E, Maris T, Struyf E (2005) The Scheldt estuary: a description of a changing ecosystem. Hydrobiologia 540:1–11. doi:10.1007/s10750-005-0896-8

    Article  Google Scholar 

  • Meire P, Dauwe W, Maris T, Peeters P, Coen L, Deschamps M, Rutten J, Temmerman S (2014) Estuaries in focus sigma plan proves efficiency: the recent “Saint-Nicholas” storm surge in the Scheldt estuary: the Sigma plan proves its efficiency! ECSA Bull 62:19–23

    Google Scholar 

  • Möller I (2006) Quantifying saltmarsh vegetation and its effect on wave height dissipation: results from a UK East coast saltmarsh. Estuar Coast Shelf Sci 69:337–351. doi:10.1016/j.ecss.2006.05.003

    Article  Google Scholar 

  • Möller I, Spencer T (2002) Wave dissipation over macro-tidal saltmarshes: effects of marsh edge typology and vegetation change. J Coast Res 521:506–521. ISSN:0749-0208

    Google Scholar 

  • Möller I, Kudella M, Rupprecht F, Spencer T, Paul M, van Wesenbeeck BK, Wolters G, Jensen K, Bouma TJ, Miranda-Lange M, Schimmels S (2014) Wave attenuation over coastal salt marshes under storm surge conditions. Geosci, Nat. doi:10.1038/ngeo2251

    Google Scholar 

  • Moskalski SM, Sommerfield CK (2012) Suspended sediment deposition and trapping efficiency in a Delaware salt marsh. Geomorphology 139–140:195–204. doi:10.1016/j.geomorph.2011.10.018

    Article  Google Scholar 

  • Mudd SM, Fagherazzi S, Morris JT, Furbish DJ (2013) Flow, sedimentation, and biomass production on a vegetated salt marsh in South Carolina: toward a predictive model of marsh morphologic and ecologic evolution. In: The ecogeomorphology of tidal marshes. American Geophysical Union, pp 165–188. doi:10.1029/CE059p0165

  • Neumeier U, Ciavola P (2004) Flow resistance and associated sedimentary processes in a Spartina maritima salt-marsh. J Coast Res 202:435–447

    Article  Google Scholar 

  • Neumeier U, Amos CL (2006) The influence of vegetation on turbulence and flow velocities in European salt-marshes. Sedimentology 53:259–277. doi:10.1111/j.1365-3091.2006.00772.x

    Article  Google Scholar 

  • Penland S, Wayne L, Britsch D, Williams SJ, Beall AD, Butterworth V (2000) Geomorphic classification of coastal land loss between 1932 and 1990 in the Mississippi river delta plain, Southeastern Louisiana. USGS Open File Report 00-417

    Google Scholar 

  • Reed DJ, Spencer T, Murray AL, French JR, Leonard L (1999) Marsh surface sediment deposition and the role of tidal creeks: implications for created and managed coastal marshes. J Coast Conserv 5:81–90. doi:10.1007/BF02802742

    Article  Google Scholar 

  • Schepers L, Kirwan M, Guntenspergen G, Temmerman S (2017) Spatio-temporal development of vegetation die-off in a submerging coastal marsh. Limnology and Oceanography 62:137–150. doi: 10.1002/lno.10381

  • Smolders S, Plancke Y, Ides S, Meire P, Temmerman S (2015) Role of intertidal wetlands for tidal and storm tide attenuation along a confined estuary: a model study. Nat Hazards Earth Syst Sci 15:1659–1675. doi:10.5194/nhess-15-1659-2015

    Article  Google Scholar 

  • Spencer KL, Harvey GL (2012) Understanding system disturbance and ecosystem services in restored saltmarshes: Integrating physical and biogeochemical processes. Estuar Coast Shelf Sci 106:23–32. doi: 10.1016/j.ecss.2012.04.020

  • Stoddart DR, Reed DJ, French JR (1989) Understanding salt-marsh accretion, Scolt Head Island, Norfolk. England. Estuaries 12:228. doi:10.2307/1351902

    Article  Google Scholar 

  • Struyf E, Temmerman S, Meire P (2007) Dynamics of biogenic Si in freshwater tidal marshes: Si regeneration and retention in marsh sediments (Scheldt estuary). Biogeochemistry 82:41–53. doi:10.1007/s10533-006-9051-5

    Article  Google Scholar 

  • Temmerman S, Govers G, Meire P, Wartel S (2003a) Modelling long-term tidal marsh growth under changing tidal conditions and suspended sediment concentrations, Scheldt estuary, Belgium. Mar Geol 193:151–169. doi:10.1016/S0025-3227(02)00642-4

    Article  Google Scholar 

  • Temmerman S, Govers G, Wartel S, Meire P (2003b) Spatial and temporal factors controlling short-term sedimentation in a salt and freshwater tidal marsh, scheldt estuary, Belgium, SW Netherlands. Earth Surf Process Landforms 28:739–755. doi:10.1002/esp.495

    Article  Google Scholar 

  • Temmerman S, Govers G, Meire P, Wartel S (2004a) Simulating the long-term development of levee-basin topography on tidal marshes. Geomorphology 63:39–55. doi:10.1016/j.geomorph.2004.03.004

    Article  Google Scholar 

  • Temmerman S, Govers G, Wartel S, Meire P (2004b) Modelling estuarine variations in tidal marsh sedimentation: response to changing sea level and suspended sediment concentrations. Mar Geol 212:1–19. doi:10.1016/j.margeo.2004.10.021

    Article  Google Scholar 

  • Temmerman S, Bouma TJ, Govers G, Lauwaet D (2005a) Flow paths of water and sediment in a tidal marsh: relations with marsh developmental stage and tidal inundation height. Estuaries 28:338–352. doi:10.1007/BF02693917

    Article  Google Scholar 

  • Temmerman S, Bouma TJ, Govers G, Wang ZB, De Vries MB, Herman PMJ (2005b) Impact of vegetation on flow routing and sedimentation patterns: three-dimensional modeling for a tidal marsh. J Geophys Res Earth Surf 110:1–18. doi:10.1029/2005JF000301

    Article  Google Scholar 

  • Temmerman S, Govers G, Bouma TJ, De Vries M, Wartel S, Meire P (2006) Opslibbing van schorren en overstromingsgebieden langs de Schelde: een onvermijdelijk natuurlijk proces. Water 26:1–9

    Google Scholar 

  • Temmerman S, Bouma TJ, van de Koppel J, van der Wal D, De Vries MB, Herman PMJ (2007) Vegetation causes channel erosion in a tidal landscape. Geology 35:631–634. doi:10.1130/G23502A.1

    Article  Google Scholar 

  • Temmerman S, Moonen P, Schoelynck J, Govers G, Bouma TJ (2012) Impact of vegetation die-off on spatial flow patterns over a tidal marsh. Geophys Res Lett 39:1–5. doi:10.1029/2011GL050502

    Article  Google Scholar 

  • Temmerman S, Meire P, Bouma TJ, Herman PMJ, Ysebaert T, De Vriend HJ (2013) Ecosystem-based coastal defence in the face of global change. Nature 504:79–83. doi:10.1038/nature12859

    Article  Google Scholar 

  • Teuchies J, Vandenbruwaene W, Carpentier R, Bervoets L, Temmerman S, Wang C, Maris T, Cox TJS, Van Braeckel A, Meire P (2013) Estuaries as filters: The role of tidal marshes in trace metal removal. PLoS One 8:e70381. doi:10.1371/journal.pone.0070381

    Article  Google Scholar 

  • Van Braeckel A, Piesschaert F, Van den Bergh E (2006) Historische analyse van de Zeeschelde en haar getijgebonden zijrivieren. 19e eeuw tot heden. Report of the Research Institute for Nature and Forest (INBO.R.2006.29). Brussel

    Google Scholar 

  • Van Braeckel A, Mikkelsen JH, Dillen J, Piesschaert F, Van den Bergh E, Coen L, De Mulder T, Ides S, Maximova T, Peeters P, Plancke Y, Mostaert F (2009) Inventarisatie en historische analyse van Zeescheldehabitats Vervolgstudie: resultaten van het tweede jaar. Report of the Research Institute for Nature and Forest (INBO.IR.2009.34)

    Google Scholar 

  • Van Braeckel A, Elsen R, Van den Bergh E (2014) MONEOS—geomorfologie. Hoogteraaien van slik en schor in de Zeeschelde. Evolutie van toestand tot 2012. Report of the Research Institute for Nature and Forest (INBO.R.2014. 1860252). Brussel

    Google Scholar 

  • Van Damme S, Frank D, Micky T, Olivier B, Eric S, Britta G, Oswald VC, Patrick M (2009) Tidal exchange between a freshwater tidal marsh and an impacted estuary: the Scheldt estuary, Belgium. Estuar Coast Shelf Sci 85:197–207. doi:10.1016/j.ecss.2009.08.005

    Article  Google Scholar 

  • van de Koppel J, Van der Wal D, Bakker JP, Herman PMJ (2005) Self-organization and vegetation collapse in salt marsh ecosystems. Am Nat 165:E1–E12. doi:10.1086/426602

    Article  Google Scholar 

  • van de Koppel J, Bouma TJ, Herman PMJ (2012) The influence of local- and landscape-scale processes on spatial self-organization in estuarine ecosystems. J Exp Biol 215:962–967. doi:10.1242/jeb.060467

    Article  Google Scholar 

  • Van den Bergh E, Huiskes A, Criel B, Hoffmann M, Meire P (2001) Biodiversiteit op de Scheldeschorren. Levende Nat 102:62–66

    Google Scholar 

  • Van Den Bergh E, Ysebaert T, Meire P (2005) Water bird communities in the Lower Zeeschelde: long-term changes near an expanding harbour. Hydrobiologia 540:237–258. doi:10.1007/s10750-004-7147-2

    Article  Google Scholar 

  • van der Wal D, Pye K (2004) Patterns, rates and possible causes of saltmarsh erosion in the Greater Thames area (UK). Geomorphology 61:373–391. doi:10.1016/j.geomorph.2004.02.005

    Article  Google Scholar 

  • Van der Wal D, Wielemaker-Van den Dool A, Herman PMJ (2008) Spatial patterns, rates and mechanisms of saltmarsh cycles (Westerschelde, The Netherlands). Estuar Coast Shelf Sci 76:357–368. doi:10.1016/j.ecss.2007.07.017

    Article  Google Scholar 

  • Vandenbruwaene W, Maris T, Cox T, Cahoon DR, Meire P, Temmerman S (2011a) Sedimentation and response to sea-level rise of a restored marsh with reduced tidal exchange: comparison with a natural tidal marsh. Geomorphology 130:115–126. doi:10.1016/j.geomorph.2011.03.004

  • Vandenbruwaene W, Temmerman S, Bouma TJ, Klaassen PC, De Vries MB, Callaghan DP, Van Steeg P, Dekker F, Van Duren LA, Martini E, Balke T, Biermans G, Schoelynck J, Meire P (2011b) Flow interaction with dynamic vegetation patches: implications for biogeomorphic evolution of a tidal landscape. J Geophys Res Earth Surf 116:1–13. doi:10.1029/2010JF001788

    Article  Google Scholar 

  • Vandenbruwaene W, Meire P, Temmerman S (2012) Formation and evolution of a tidal channel network within a constructed tidal marsh. Geomorphology 151–152:114–125. doi:10.1016/j.geomorph.2012.01.022

    Article  Google Scholar 

  • Vandenbruwaene W, Bouma TJ, Meire P, Temmerman S (2013) Bio-geomorphic effects on tidal channel evolution: Impact of vegetation establishment and tidal prism change. Earth Surf Process Landforms 38:122–132. doi:10.1002/esp.3265

    Article  Google Scholar 

  • Vandenbruwaene W, Schwarz C, Bouma TJ, Meire P, Temmerman S (2015) Landscape-scale flow patterns over a vegetated tidal marsh and an unvegetated tidal flat: implications for the landform properties of the intertidal floodplain. Geomorphology 231:40–52. doi:10.1016/j.geomorph.2014.11.020

    Article  Google Scholar 

  • Verbeek H, Storm C (2001) Tidal wetland restoration in The Netherlands. J Coast Res SI 27:192–202

    Google Scholar 

  • Vroon J, Storm C, Coosen J (1997) Westerschelde, stram of struis? Eindrapport van het Project Oostwest, een studie naar de beïnvloeding van fysische en verwante biologische patronen in een estuarium. Report RIKZ, 97.023.

    Google Scholar 

  • Wang C, Temmerman S (2013) Does biogeomorphic feedback lead to abrupt shifts between alternative landscape states?: an empirical study on intertidal flats and marshes. J Geophys Res Earth Surf 118:229–240. doi:10.1029/2012JF002474

    Article  Google Scholar 

  • Weerman EJ, van de Koppel J, Eppinga MB, Montserrat F, Liu Q-X, Herman PMJ (2010) Spatial self-organization on intertidal mudflats through biophysical stress divergence. Am Nat 176:E15–E32. doi:10.1086/652991

    Article  Google Scholar 

  • Widdows J, Brinsley M (2002) Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone. J Sea Res 48:143–156. doi:10.1016/S1385-1101(02)00148-X

    Article  Google Scholar 

  • Ysebaert T, Meininger PL, Meire P, Devos K, Berrevoets CM, Strucker RCW, Kuijken E (2000) Waterbird communities along the estuarine salinity gradient of the Schelde estuary, NW-Europe. Biodivers Conserv 9:1275–1296. doi:10.1023/A:1008976306651

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennert Schepers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Schepers, L., Maris, T., Meire, P., Temmerman, S. (2018). The Scheldt Estuary: An Overview of the Morphodynamics of Intertidal Areas. In: Demoulin, A. (eds) Landscapes and Landforms of Belgium and Luxembourg. World Geomorphological Landscapes. Springer, Cham. https://doi.org/10.1007/978-3-319-58239-9_17

Download citation

Publish with us

Policies and ethics