Skip to main content

Part of the book series: SpringerBriefs in Astronomy ((BRIEFSASTRON))

  • 635 Accesses

Abstract

All attempts to solve the three-body problem described in the previous chapters have greatly enriched celestial and classical mechanics. However, the ubiquity of fast computers with modes of operation that allow for parallel computations, numerical solutions have been the driving force in finding and studying possible solutions to the three-body problem. In this chapter, we provide a brief overview of common numerical schemes in terms of the mathematics of the algorithms used, as well as short examples written in the open-source programming language Python. The topics included in our discussion deal with numerical integration of the three-body problem, Fourier analysis, determination of mean motion resonances, and chaos indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See http://rebound.readthedocs.io/en/latest/ipython/PoincareMap.html for a working example using REBOUND.

References

  • R. Barnes, R. Greenberg, Stability limits in extrasolar planetary systems. Astrophys. J. Lett. 647, L163–L166 (2006)

    Article  ADS  Google Scholar 

  • G. Benettin, L. Galgani, A. Giorgilli, J.-M. Strelcyn, Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems – a method for computing all of them. I – theory. II – numerical application. Meccanica 15, 9–30 (1980)

    MATH  Google Scholar 

  • J.E. Chambers, A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999). doi:10.1046/j.1365-8711.1999.02379.x

    Article  ADS  Google Scholar 

  • P. Cincotta, C. Simó, Conditional entropy. Celest. Mech. Dyn. Astron. 73, 195–209 (1999)

    Article  ADS  MATH  Google Scholar 

  • P.M. Cincotta, C. Simó, Simple tools to study global dynamics in non-axisymmetric galactic potentials - i. Astron. Astrophys. Suppl. 147, 205–228 (2000)

    Article  ADS  Google Scholar 

  • R. Dvorak, E. Pilat-Lohinger, E. Bois, R. Schwarz, B. Funk, C. Beichman, W. Danchi, C. Eiroa, M. Fridlund, T. Henning, T. Herbst, L. Kaltenegger, H. Lammer, A. Léger, R. Liseau, J. Lunine, F. Paresce, A. Penny, A. Quirrenbach, H. Røttgering, F. Selsis, J. Schneider, D. Stam, G. Tinetti, G.J. White, Dynamical habitability of planetary systems. Astrobiology 10, 33–43 (2010)

    Article  ADS  Google Scholar 

  • C. Froeschlé, E. Lega, R. Gonczi, Fast lyapunov indicators. application to asteroidal motion. Celest. Mech. Dyn. Astron. 67, 41–62 (1997)

    Google Scholar 

  • B. Funk, R. Schwarz, E. Pilat-Lohinger, Á. Süli, R. Dvorak, Stability of inclined orbits of terrestrial planets in habitable zones. Planet. Space Sci. 57, 434–440 (2009)

    Article  ADS  Google Scholar 

  • K. Goździewski, Stability of the 47 uma planetary system. Astron. Astrophys. 393, 997–1013 (2002)

    Article  ADS  Google Scholar 

  • K. Goździewski, E. Bois, A.J. Maciejewski, L. Kiseleva-Eggleton, Global dynamics of planetary systems with the megno criterion. Astron. Astrophys. 378, 569–586 (2001)

    Article  ADS  Google Scholar 

  • K. Goździewski, E. Bois, A.J. Maciejewski, Global dynamics of the gliese 876 planetary system. Mon. Not. R. Astron. Soc. 332, 839–855 (2002b)

    Google Scholar 

  • K. Goździewski, M. Słonina, C. Migaszewski, A. Rozenkiewicz, Testing a hypothesis of the ν octantis planetary system. Mon. Not. R. Astron. Soc. 430, 533–545 (2013)

    Article  ADS  Google Scholar 

  • E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd Revised edn. (Springer, New York, 1993). ISBN 0-387-56670-8

    Google Scholar 

  • D.P. Hamilton, A comparison of lorentz, planetary gravitational, and satellite gravitational resonances. Icarus 109, 221–240 (1994)

    Article  ADS  Google Scholar 

  • R.C. Hilborn, Chaos and Nonlinear Dynamics (Oxford University Press, Oxford, 1994)

    MATH  Google Scholar 

  • T.C. Hinse, A.A. Christou, J.L.A. Alvarellos, K. Goździewski, Application of the megno technique to the dynamics of jovian irregular satellites. Mon. Not. R. Astron. Soc. 404, 837–857 (2010)

    Article  ADS  Google Scholar 

  • H. Kinoshita, H. Yoshida, H. Nakai, Symplectic integrators and their application to dynamical astronomy. Celest. Mech. Dyn. Astron. 50, 59–71 (1991)

    Article  ADS  MATH  Google Scholar 

  • T. Kotoulas, G. Voyatzis, Comparative study of the 2:3 and 3:4 resonant motion with neptune: an application of symplectic mappings and low frequency analysis. Celest. Mech. Dyn. Astron. 88, 343–363 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Y. Kozai, Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  • G. Laughlin, J. Chambers, D. Fischer, A dynamical analysis of the 47 ursae majoris planetary system. Astrophys. J. 579, 455–467 (2002)

    Article  ADS  Google Scholar 

  • M.L. Lidov, The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 9, 719–759 (1962)

    Article  ADS  Google Scholar 

  • A.M. Lyapunov, Probléme général de la stabilité du mouvement. Annals de la Faculté des Sciences de Toulouse (3) 9, 203–474 (1907)

    Google Scholar 

  • R.A. Mardling, Resonance, chaos and stability: the three-body problem in astrophysics, in The Cambridge N-Body Lectures, ed. by S.J. Aarseth, C.A. Tout, R.A. Mardling. Lecture Notes in Physics, vol. 760 (Springer, Berlin, 2008), p. 59

    Google Scholar 

  • C. Migaszewski, M. Słonina, K. Goździewski, A dynamical analysis of the kepler-11 planetary system. Mon. Not. R. Astron. Soc. 427, 770–789 (2012)

    Article  ADS  Google Scholar 

  • S. Mikkola, K. Innanen, Symplectic tangent map for planetary motions. Celest. Mech. Dyn. Astron. 74, 59–67 (1999). doi:10.1023/A:1008312912468

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • C.D. Murray, S.F. Dermott, Solar System Dynamics (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  • Z.E. Musielak, D.E. Musielak, High-dimensional chaos in dissipative and driven dynamical systems. Int. J. Bifurcation Chaos 19, 2823–2869 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A.I. Pavlov, A.J. Maciejewski, An efficient method for studying the stability and dynamics of the rotational motions of celestial bodies. Astron. Lett. 29, 552–566 (2003)

    Article  ADS  Google Scholar 

  • E. Pilat-Lohinger, B. Funk, R. Dvorak, Stability limits in double stars. a study of inclined planetary orbits. Astron. Astrophys. 400, 1085–1094 (2003)

    Google Scholar 

  • W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in FORTRAN. The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  • H. Rein, D.S. Spiegel, IAS15: a fast, adaptive, high-order integrator for gravitational dynamics, accurate to machine precision over a billion orbits. Mon. Not. R. Astron. Soc. 446, 1424–1437 (2015). doi:10.1093/mnras/stu2164

    Article  ADS  Google Scholar 

  • H. Rein, D. Tamayo, WHFAST: a fast and unbiased implementation of a symplectic Wisdom-Holman integrator for long-term gravitational simulations. Mon. Not. R. Astron. Soc. 452, 376–388 (2015). doi:10.1093/mnras/stv1257

    Article  ADS  Google Scholar 

  • H. Rein, D. Tamayo, Second-order variational equations for N-body simulations. Mon. Not. R. Astron. Soc. 459, 2275–2285 (2016). doi:10.1093/mnras/stw644

    Article  ADS  Google Scholar 

  • S. Satyal, B. Quarles, T.C. Hinse, Application of chaos indicators in the study of dynamics of s-type extrasolar planets in stellar binaries. Mon. Not. R. Astron. Soc. 433, 2215–2225 (2013)

    Article  ADS  Google Scholar 

  • V. Szebehely, Theory of Orbits: The Restricted Problem of Three Bodies (Academic Press, New York/London, 1967)

    MATH  Google Scholar 

  • V. Szebehely, C.F. Peters, Complete solution of a general problem of three bodies. Astron. J. 72, 876 (1967a)

    Google Scholar 

  • J. Tailleur, J. Kurchan, Probing rare physical trajectories with Lyapunov weighted dynamics. Nat. Phys. 3, 203–207 (2007). doi:10.1038/nphys515

    Article  Google Scholar 

  • M. Šuvakov, V. Dmitrašinović, Three classes of newtonian three-body planar periodic orbits. Phys. Rev. Lett. 110(11), 114301 (2013)

    Google Scholar 

  • J. Wisdom, M. Holman, Symplectic maps for the n-body problem – stability analysis. Astron. J. 104, 2022–2029 (1992)

    Article  ADS  Google Scholar 

  • A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985). doi:10.1016/0167-2789(85)90011-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990). doi:10.1016/0375-9601(90)90092-3

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Musielak, Z., Quarles, B. (2017). Numerical Solutions. In: Three Body Dynamics and Its Applications to Exoplanets. SpringerBriefs in Astronomy. Springer, Cham. https://doi.org/10.1007/978-3-319-58226-9_4

Download citation

Publish with us

Policies and ethics