Skip to main content

Part of the book series: SpringerBriefs in Astronomy ((BRIEFSASTRON))

  • 635 Accesses

Abstract

The most important theoretical developments (historical and recent) in the three-body problem are presented and discussed. The first part of the presentation is devoted to periodic solutions to the equations of motion, the second part to non-periodic solutions, and in the third part a detailed description of different stability criteria is given. Each part contains extensive discussions of the general, circular restricted and elliptical restricted three-body problem, as well as the Hill problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • K.G. Anderson, Poincaré’s discovery of homoclinic points. Arch. Hist. Exact Sci. 48, 133–147 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.P. Anosova, V.V. Orlov, Main features of dynamical escape from three-dimensional triple systems. Celest. Mech. Dyn. Astron. 59, 327–343 (1994)

    Article  ADS  Google Scholar 

  • V.I. Arnold, Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the hamiltonian. Russ. Math. Surv. 18, 9–36 (1963)

    Google Scholar 

  • G.L. Baker, J.P. Gollub, Chaotic Dynamics. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  • B. Bardin, On motions near the lagrange equilibrium point l4 in the case of routh’s critical mass ratio. Celest. Mech. Dyn. Astron. 82, 163–177 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J. Barrow-Green, Oscar II’s prize competition and the error in Poincaré’s memoir on the three body problem. Arch. Hist. Exact Sci. 48, 107–131 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J. Barrow-Green, Poincaré and the Three Body Problem (American Mathematical Society, Providence, RI, 1997)

    MATH  Google Scholar 

  • E. Belbruno, Existence of chaos associated with weak ballistic capture and applications. Ann. N. Y. Acad. Sci. 1017, 1–10 (2004). doi:10.1196/annals.1311.001

    Article  ADS  Google Scholar 

  • E.A. Belbruno (ed.), Lunar capture orbits, a method of constructing earth moon trajectories and the lunar GAS mission, May 1987

    Google Scholar 

  • I. Bendixson, Sur les courbes définies par des équations différentielles. Acta 24, 1–88 (1901)

    MathSciNet  MATH  Google Scholar 

  • A. Bennett, Characteristic exponents of the five equilibrium solutions in the elliptically restricted problem. Icarus 4, 177–187 (1965)

    Article  ADS  Google Scholar 

  • M.L. Bertotti, Periodic solutions for the elliptic planar restricted three-body problem: a variational approach, in Predictability, Stability and Chaos in N-Body Dynamical Systems, ed. by A.E. Royl. NATO ASI Series (Plenum Press, New York, 1991), pp. 467–474

    Chapter  Google Scholar 

  • G. Birkhoff, Quelques théoremes sur la mouvement des systémes dynamiques. Bull. de la Société Mathématique de France 40, 305–323 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  • G. Birkhoff, Proof of poincaré’s geometric theorem. Trans. Am. Math. Soc. 14, 14–22 (1913)

    MATH  Google Scholar 

  • G. Birkhoff, The restricted problem of three bodies. Rendiconti del Circolo Matematicodi Palermo 39, 265–334 (1915)

    Article  MATH  Google Scholar 

  • G. Birkhoff, Recent advances in dynamics. Science 51, 51–55 (1920)

    Article  ADS  Google Scholar 

  • G. Birkhoff, An extension of poincare’s last theorem. Acta Math. 47, 205–216 (1925)

    MathSciNet  Google Scholar 

  • G. Bisconcini, Sur le probléme des trois corps. trajectoires le long desquelles deux au moins des trois corps se choquent. conditions qui entrainent un choc. Acta 30, 49–92 (1906)

    Google Scholar 

  • S. Bolotin, Second species periodic orbits of the elliptic 3 body problem. Celest. Mech. Dyn. Astron. 93, 343–371 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • S.V. Bolotin, R.S. MacKay, Periodic and chaotic trajectories of the second species for the n-centre problem. Celest. Mech. Dyn. Astron. 77, 49–75 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • G. Bozis, J.D. Hadjidemetriou, On the continuation of periodic orbits from the restricted to the general three-body problem. Celest. Mech. 13, 127–136 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R.A. Broucke, Motion near the unit circle in the three-body problem. Celest. Mech. Dyn. Astron. 73, 281–290 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • H. Bruns, Über die integrale des vielkörper-problems. Acta 11, 25–96 (1887)

    MathSciNet  Google Scholar 

  • B. Buffoni, Shooting methods and topological transversality. Proc. Roy. Soc. Edinb. A 129, 1137–1155 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • C.A. Burdet, Regularization of the two body problem. Z. Angew. Math. Phys. 18, 434–438 (1967)

    Article  MATH  Google Scholar 

  • A. Chenciner, R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses. Ann. Math. 152, 881–901 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • R.K Choudhry, Libration points in the generalised elliptic restricted three-body problem. Celest. Mech. 16, 411–419 (1977)

    Google Scholar 

  • G. Contopoulos, Integrals of motion in the elliptic restricted three-body problem. Astron. J. 72, 669–673 (1967)

    Article  ADS  Google Scholar 

  • J.M.A. Danby, Stability of triangular points in the elliptic restricted problem of three-bodies. Astron. J. 69, 165–172 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  • J.M.A. Danby, Fundamentals of Celestial Mechanics (Willmann-Bell, Richmond, VA, 1988)

    Google Scholar 

  • G. Darwin, Periodic orbits. Acta 21, 99–242 (1897)

    MathSciNet  MATH  Google Scholar 

  • G. Darwin, On certain families of periodic orbits. Mon. Not. R. Astron. Soc. 70, 108–143 (1909)

    Article  ADS  MATH  Google Scholar 

  • C.E. Delaunay, Théorie du mouvement de la lune ii. Mémoire de l’Academie des Sciences 29, 1–931 (1867)

    Google Scholar 

  • P. Delibaltas, Families of periodic collision orbits in the general three-body problem. Celest. Mech. 29, 191–204 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • F. Diacu, P. Holmes, Celestial Encounters. The Origins of Chaos and Stability (Princeton University Press, Princeton, NJ, 1996)

    Google Scholar 

  • R. Dvorak, E. Lohinger, Stability zones around the triangular lagrangian points. in Predictability, Stability and Chaos in N-Body Dynamical Systems, ed. by A.E. Royl, NATO ASI Series (Plenum Press, New York, 1991), pp. 439–455

    Chapter  Google Scholar 

  • J. Eberle, M. Cuntz, Z.E. Musielak, The instability transition for the restricted 3-body problem. I. Theoretical approach. Astron. Astrophys. 489, 1329–1335 (2008)

    Article  ADS  MATH  Google Scholar 

  • L. Euler. De motu rectilineo trium corporum se mutuo attrahentium. Novi Comm. Acad. Sci. Imp. Petrop. 11, 144–151 (1767)

    Google Scholar 

  • G. Gomez, M. Olle, Second species solutions in the circular and elliptic restricted three body problem. II. numerical exploration. Celest. Mech. Dyn. Astron. 52, 107–146 (1991a)

    Google Scholar 

  • G. Gomez, M. Olle, Second species solutions in the circular and elliptic restricted three body problem. II. numerical exploration. Celest. Mech. Dyn. Astron. 52, 147–166 (1991b)

    Google Scholar 

  • G. Gómez, J.J. Masdemont, C. Simó, Quasi-halo orbits associated with libration poinst. J. Astronaut. Sci. 46, 1–42 (1999)

    Google Scholar 

  • H. Gyldén, Nouvelles recherches sur les séries employées dans les théories des planétes. Acta 17, 1–168 (1893)

    MathSciNet  MATH  Google Scholar 

  • J.D. Hadjidemetriou, The continuation of periodic orbits from the restricted to the general three-body problem. Celest. Mech. 12, 155–174 (1975a)

    Google Scholar 

  • J.D. Hadjidemetriou, The stability of periodic orbits in the three-body problem. Celest. Mech. 12, 255–276 (1975b)

    Google Scholar 

  • J.D. Hadjidemetriou, The elliptic restricted three-body problem at 3:1 resonance. Celest. Mech. Dyn. Astron. 53, 151–183 (1992)

    Article  ADS  MATH  Google Scholar 

  • J.D. Hadjidemetriou, T. Christides, Families of periodic orbits in the planar three-body problem. Celest. Mech. 12, 175–187 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • N. Haghighipour, J. Couetdic, F. Varadi, W.B. Moore, Stable 1:2 resonant periodic orbits in elliptic three-body problem. Astrophys. J. 596, 1332–1340 (2003)

    Article  ADS  Google Scholar 

  • D.C. Heggie, Regularization using a time-transformation only, in Recent Advances in Dynamical Astronomy, ed. by B.D. Tapley, V. Szebehely, Astrophysics and Space Science Library, vol. 39 (Springer, Dordrecht, 1973), p. 34

    Google Scholar 

  • D.C. Heggie, Redundant variables for ‘global’ regularization of the three-body problem. Celest. Mech. 14, 69–71 (1976)

    Article  ADS  MATH  Google Scholar 

  • M. Hénon, Exploration numérique du problème restreint. Annales d’Astrophysique 28, 499–511 and 992–1007 (1965)

    Google Scholar 

  • M. Hénon, Families of periodic orbits in the three-body problem. Celest. Mech. 10, 375–388 (1974)

    Article  ADS  MATH  Google Scholar 

  • M. Hénon, Generating Families in the Restricted Three-Body Problem, vol. I (Springer, Berlin/Heidelberg/New York, 1997)

    MATH  Google Scholar 

  • M. Hénon, Generating Families in the Restricted Three-Body Problem, vol. II (Springer, Berlin/Heidelberg/New York, 2001)

    MATH  Google Scholar 

  • M. Hénon, New families of periodic orbits in hill’s problem of three bodies. Celest. Mech. Dyn. Astron. 85, 223–246 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J. Henrard, Concerning the genealogy of long period families at l 4. Astron. Astrophys. 5, 45–52 (1970)

    ADS  Google Scholar 

  • J. Henrard, The web of periodic orbits at l 4. Celest. Mech. Dyn. Astron. 83, 291–302 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J. Henrard, J.F. Navarro, Families of periodic orbits emanating from homoclinic orbits in the restricted problem of three bodies. Celest. Mech. Dyn. Astron. 89, 285–304 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • D. Hestenes, New Foundations for Classical Mechanics. Fundamental Theories of Physics (Springer, Netherlands, 1999). ISBN 9780792353027. https://books.google.com/books?id=AlvTCEzSI5wC

    MATH  Google Scholar 

  • R.C. Hilborn, Chaos and Nonlinear Dynamics (Oxford University Press, Oxford, 1994)

    MATH  Google Scholar 

  • W. Hill, Researchers into the lunar theory. Am. J. Math. I, 5–26, 129–147, 245–260 (1878)

    Google Scholar 

  • N. Hyeraci, F. Topputo, Method to design ballistic capture in the elliptic restricted three-body problem. J. Guid. Control Dyn. 33, 1814–1823 (2010). doi:10.2514/1.49263

    Article  ADS  Google Scholar 

  • S. Ichtiaroglou, Elliptic hill’s problem: families of periodic orbits. Astron. Astrophys. 98, 401–405 (1981)

    ADS  MathSciNet  MATH  Google Scholar 

  • V.G. Ivancevic, T.T. Ivancevic, High Dimensional Chaotic and Attractor Systems (Springer, Dordrecht, 2007)

    MATH  Google Scholar 

  • G. Jacobi, Sur le mouvement d’un point et sur un cas particulier du probléme des trois corps. Compt. Rend. 3, 59–61 (1836)

    Google Scholar 

  • A. Jorba, J.J. Masdemont, Dynamics in the center manifold of the restricted three-body problem. Physica D 132, 189–213 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • K. Katopodis, Continuation of periodic orbits – three-dimensional circular restricted to the general three-body problem. Celest. Mech. 19, 43–51 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • E. Koleman, N.J. Kasdin, P. Gurfil, Multiple poincaré sections method for finding the quasiperiodic orbits of the restricted three-body problem. Celest. Mech. Dyn. Astron. 112, 47–74 (2012)

    Article  ADS  MATH  Google Scholar 

  • A.N. Kolmogorov, On conservation of conditionally periodic motions under small perturbations of the hamiltonian. Dokl. Acad. Nauk SSR 98, 527–530 (1954). in Russian

    MATH  Google Scholar 

  • I.V. Kurcheeva, Periodic solutions of the restricted three-body problem that are analytical continuation of keplerian rectilinear periodic motions. Bull. Inst. Theor. Astron. 13, 365–378 (1973). (in Russian)

    ADS  Google Scholar 

  • P. Kustaanheimo, E. Stiefel, Perturbation theory of keplerian motion based on spinor regularization. J. Math. 218, 204 (1965)

    MathSciNet  MATH  Google Scholar 

  • J.L. Lagrange, Essai sur le probléme des trois corps. Euvres 6, 229–331 (1772)

    Google Scholar 

  • L. Lagrange, Sur l’alteration des moyens mouvements des planets. Mem. Acad. Sci. 6, 199 (1776)

    Google Scholar 

  • P.S. Laplace, Memoires de mathematique et de physique 7, 113–114 (1773)

    Google Scholar 

  • T. Levi-Civita, Traiettorie singolari ed urti nel problema ristretto dei tre corpi. Annali di Matematica (3) 9, 1–32 (1903)

    Google Scholar 

  • T. Levi-Civita, Sur la régularisation du probléme des trois corps. Acta 42, 92–144 (1918)

    Google Scholar 

  • A. Lindstedt, Sur la détermination des distances mutuelles dans le probléme des trois corps. Annales de l’École Normale (3) 1, 85–102 (1884)

    Google Scholar 

  • J. Llibre, C. Pinol, On the elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 48, 319–345 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  • L.G. Luk’Yanov, Energy conservation in the restricted elliptical three-body problem. Astron. Rep. 49, 1018–1027 (2005). doi:10.1134/1.2139818

    Article  ADS  Google Scholar 

  • L.G. Lukyanov, V.S. Uralskaya, Hill stability of natural planet satellites in the restricted elliptic three-body problem. Sol. Syst. Res. 49, 263–270 (2015). doi:10.1134/S0038094615040061

    Article  ADS  Google Scholar 

  • A.M. Lyapunov, The General Problem of the Stability of Motion (Republished by the University of Toulouse 1908), vol. 7 (Kharkov Mathematical Society, Kharkov, 1892), p. 250

    Google Scholar 

  • A.M. Lyapunov, Probléme général de la stabilité du mouvement. Annals de la Faculté des Sciences de Toulouse (3) 9, 203–474 (1907)

    Google Scholar 

  • W.D. MacMillan, An integrable case in the restricted problem of three bodies. Astron. J. 27, 11–13 (1913)

    Article  ADS  Google Scholar 

  • Z. Makó, Connection between Hill stability and weak stability in the elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 120, 233–248 (2014). doi:10.1007/s10569-014-9577-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Z. Makó, F. Szenkovits, Capture in the circular and elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 90, 51–58 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.E. Mansilla, Stability of hamiltonian systems with three degrees of freedom and the three body-problem. Celest. Mech. Dyn. Astron. 94, 249–269 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • C. Marchal, The Three-Body Problem, vol. 4 (Elsevier, Amsterdam, 1990)

    MATH  Google Scholar 

  • V.V. Markellos, The three-dimensional general three-body problem – determination of periodic orbits. Celest. Mech. 21, 291–309 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • V.V. Markellos, Remarkable termination orbits of the restricted problem, in Predictability, Stability and Chaos in N-Body Dynamical Systems, ed. by A.E. Royl, NATO ASI Series (Plenum Press, New York, 1991), pp. 413–423

    Chapter  Google Scholar 

  • R. McGehee, Triple collision in the collinear three-body problem. Invent. Math. 27, 191–227 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Milani, A.M. Nobili, On topological stability in the general three-body problem. Celest. Mech. 31, 213–240 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R. Montgomery, A new solution to the three-body problem. Not. Am. Math. Soc. 48, 471–481 (2001)

    MathSciNet  MATH  Google Scholar 

  • C.D. Moore, Braids in classical gravity. Phys. Rev. Lett. 70, 3675–3679 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J. Moser, On invariant curves of area-preserving mappings of an annulus. Nachricht von der Akademie der Wissenschaften, Gottingen II, Math. Phys. K1, 1–20 (1962)

    Google Scholar 

  • F.R. Moulton, D. Buchanan, T. Buck, F.L. Griffin, W.R. Longley, W.D. MacMillan, Periodic Orbits (Carnegie institution of Washington, Washington, DC, 1920)

    Google Scholar 

  • Z.E. Musielak, D.E. Musielak, High-dimensional chaos in dissipative and driven dynamical systems. Int. J. Bifurcation Chaos 19, 2823–2869 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Z.E. Musielak, B. Quarles, The three-body problem. Rep. Prog. Phys. 77(6), 065901 (2014). doi:10.1088/0034-4885/77/6/065901

    Google Scholar 

  • P. Painlevé, Sur les singularités des équations de la dynamique et sur la probléme des trois corps. Compt. Rend. 123, 871–873 (1896)

    MATH  Google Scholar 

  • P. Painlevé, Sur le cas du probléme des trois corps (et des n corps) oú deux des corps se choquent au bout d’un temps fini. Compt. Rend. 125, 1078–1081 (1897)

    MATH  Google Scholar 

  • E. Perdios, C.G. Zagouras, O. Ragos, Three-dimensional bifurcations of periodic solutions around triangular equilibrium points of the restricted three-body problem. Celest. Mech. Dyn. Astron. 51, 349–362 (1991)

    Article  ADS  MATH  Google Scholar 

  • H. Poincaré, Sur les résidus des intégrales doubles. Acta Math. 9, 321–380 (1887)

    Article  MathSciNet  MATH  Google Scholar 

  • H. Poincaré, Sur le probléme des trois corps et les équations de la dynamique. Acta 13, 1–270 (1890)

    MATH  Google Scholar 

  • H. Poincaré, Les Méthodes Nouvelles de la Méchanique Céleste,’ Tome 1 (1892), 2 (1892), 3 (1899) (English translation ’New Methods of Celestial Mechanics, Parts 1, 2, 3 (1993)), Gauthier-Villars, American Institute of Physics (1892)

    Google Scholar 

  • H. Poincaré, Rendiconti del circolo mathematico de palermo. Acta 33, 375–407 (1912)

    Google Scholar 

  • S.D. Poisson, J. l’Ecole Polytechnique XV, 8 (1809)

    Google Scholar 

  • O. Ragos, K.E. Papadakis, C.G. Zagouras, Stability regions and quasi-periodic motion in the vicinity of triangular equilibrium points. Celest. Mech. Dyn. Astron. 67, 251–274 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • O. Ragos, E. Perdios, V. Kalantonis, M. Vrahatis, On the equilibrium points of the relativistic restricted three-body problem. Nonlinear Anal. 47, 3413–3421 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • X.S. Ramos, J.A. Correa-Otto, C. Beaugé, The resonance overlap and Hill stability criteria revisited. Celest. Mech. Dyn. Astron. 123, 453–479 (2015). doi:10.1007/s10569-015-9646-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Y. Ren, J. Shan, Numerical study of the three-dimensional transit orbits in the circular restricted three-body problem. Celest. Mech. Dyn. Astron. 114, 14pp (2012)

    Article  MathSciNet  Google Scholar 

  • P. Robutel, An application of kam theory to the planetary three body problem. Celest. Mech. Dyn. Astron. 56, 197–199 (1993)

    Article  ADS  MATH  Google Scholar 

  • D. Romagnoli, C. Circi, Earth–moon weak stability boundaries in the restricted three and four body problem. Celest. Mech. Dyn. Astron. 103(1), 79–103 (2009). ISSN 1572-9478. doi:10.1007/s10569-008-9169-y. http://dx.doi.org/10.1007/s10569-008-9169-y

  • A.E. Roy, Orbital Motion (Institute of Physics Publishing, Bristol, 2005)

    MATH  Google Scholar 

  • E. Sarris, Integrals of motion in the elliptic three-dimensional restricted three-body problem. Celest. Mech. 26, 352–360 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R. Sergysels, Zero velocity hypersurfaces for the general three-dimensional three-body problem. Celest. Mech. 38, 207–214 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • C.L. Siegel, Der dreierstoss. Ann. Math. 42, 127–168 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  • C.L. Siegel, J.K. Moser, Lectures on Celestial Mechanics (Springer, Berlin/Heidelberg/New York, 1991)

    MATH  Google Scholar 

  • C. Simó, Dynamical properties of the figure eight solution of the three-body problem, in Celestial Mechanics, Dedicated to Donald Saari for his 60th Birthday, ed. by A. Chenciner, R. Cushman, C. Robinson, Z.J. Xia (American Mathematical Society, Providence, RI, 2002), p. 209

    Google Scholar 

  • A.T. Sinclair, Periodic solutions in the commensurable three-body problem. Celest. Mech. 2, 350 (1970)

    Article  ADS  MATH  Google Scholar 

  • R.H. Smith, V. Szebehely, The onset of chaotic motion in the restricted problem of three bodies. Celest. Mech. Dyn. Astron. 56, 409–425 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • E.M. Standish Jr., Sufficient conditions for escape in the three-body problem. Celest. Mech. 4, 44–48 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • E.M. Standish Jr., Sufficient conditions for return in the three-body problem. Celest. Mech. 6, 352–355 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • E. Strömgren, Connaissance actuelle des orbites dans le probléme des trois corps. Bull. Astron. Paris 9, 87–130 (1935)

    MATH  Google Scholar 

  • E. Strömgren, P. Pedersen, Two Offprints on the Three Body Problem: 1) Forms of Periodic Motion in the Restricted Problem and in the General Problem of Three Bodies, According to Researches Executed at the Observatory of Copenhagen (E. Strömgren); 2) On the Periodic Orbits in the Neighborhood of the Triangular Equilibrium Points in the Restricted Problem Three Bodies (P. Petersen). Meddelelser fra Kobenhavns Observatorium, 1922

    Google Scholar 

  • K.F. Sundman, Recherches sur le probléme des trois corps. Acta Soc. Sci. Fen. 34(6), 1–43 (1907)

    MATH  Google Scholar 

  • K.F. Sundman, Nouvelles recherches sur le probléme des trois corps. Acta Soc. Sci. Fen. 35(9), 1–27 (1909)

    MATH  Google Scholar 

  • K.F. Sundman, Mémoiresur le probléme des trois corps. Acta 36, 105–179 (1912)

    MathSciNet  MATH  Google Scholar 

  • V. Szebehely, Theory of Orbits: The Restricted Problem of Three Bodies (Academic Press, New York/London, 1967)

    MATH  Google Scholar 

  • V. Szebehely, Stability of artificial and natural satellites. Celest. Mech. 18, 383–389 (1978). doi:10.1007/BF01230350

    Article  ADS  MATH  Google Scholar 

  • V. Szebehely, C.F. Peters, Complete solution of a general problem of three bodies. Astron. J. 72, 876 (1967a)

    Google Scholar 

  • V. Szebehely, C.F. Peters, A new periodic solution of the problem of three bodies. Astron. J. 72, 1187 (1967b)

    Google Scholar 

  • F. Szenkovits, Out-of-plane critical points in the ERTBP. Publ. Astron. Dep. Eotvos Lorand Univ. 19, 151 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  • F. Szenkovits, Z. Makó, About the hill stability of extrasolar planets in stellar binary systems. Celest. Mech. Dyn. Astron. 101, 273–287 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.M.T. Thompson, H.B. Stewart, Nonlinear Dynamics Chaos (Wiley, New York, 1986)

    MATH  Google Scholar 

  • F. Topputo, E. Belbruno, Computation of weak stability boundaries: Sun-Jupiter system. Celest. Mech. Dyn. Astron. 105, 3–17 (2009). doi:10.1007/s10569-009-9222-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M. Šuvakov, Numerical search for periodic solutions in the vicinity of the figure-eight orbit: slaloming around singularities on the shape sphere. ArXiv e-prints, 2013

    Google Scholar 

  • M. Šuvakov, V. Dmitrašinović, Three classes of newtonian three-body planar periodic orbits. Phys. Rev. Lett. 110(11), 114301 (2013)

    Google Scholar 

  • M. Valtonen, H. Karttunen, The Three-Body Problem (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  • G. Voyatzis, I. Gkolias, H. Varvoglis, The dynamics of the elliptic hill problem: periodic orbits and stability regions. Celest. Mech. Dyn. Astron. 113, 125–139 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • J. Waldvogel, The three-body problem near triple collisions. Celest. Mech. 14, 287–300 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J. Waldvogel, The variational equation of the three-body problem. Celest. Mech. 21, 171–175 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • E.T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid bodies (Cambridge University Press, London/New York, 1904)

    MATH  Google Scholar 

  • A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985). doi:10.1016/0167-2789(85)90011-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • C.G. Zagouras, P.G. Kazantzis, Three-dimensional periodic oscillations generating from plane periodic ones around the collinear lagrange points. Astrophys. Space Sci. 61, 389–409 (1979)

    Article  ADS  MATH  Google Scholar 

  • C.G. Zagouras, V.V. Markellos, Asymmetric periodic orbits of the restricted problem in three dimensions. Astron. Astrophys. 59, 79–89 (1977)

    ADS  MATH  Google Scholar 

  • C.G. Zagouras, E. Perdios, O. Ragos, New kinds of asymmetric periodic orbits in the restricted problem in three dimensions. Astrophys. Space Sci. 240, 273–293 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Musielak, Z., Quarles, B. (2017). Theoretical Developments. In: Three Body Dynamics and Its Applications to Exoplanets. SpringerBriefs in Astronomy. Springer, Cham. https://doi.org/10.1007/978-3-319-58226-9_3

Download citation

Publish with us

Policies and ethics