Skip to main content

Platform Color Designs for Interactive Molecular Arrangements

  • Conference paper
  • First Online:
  • 485 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10240))

Abstract

It has been shown that alternating attachments of two types (species) of floating molecular (DNA based) tiles on a predesigned array that consists of communicating neighboring DNA tiles complementary to the floating tiles can dynamically simulate some types of cellular automata (CA). We show that the model can simulate any elementary one dimensional CA confirming the universal computational power of the model. We address the question of which design of the platform array provides communication across the whole plane. We show that for square tiles only the checkerboard arrangement of the two species can provide communication between any two tiles of the plane. On the other hand, there are an uncountable number of arrangements of two colors of hexagonal tiles on the plane which provide communication between any two tiles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Asanuma, H., Liang, X.G., Nishioka, H., Matsunaga, D., Liu, M.Z., Komiyama, M.: Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA. Nat. Protoc. 2(1), 203–212 (2007)

    Article  Google Scholar 

  2. Axenovich, M.A.: On multiple coverings of the infinite rectangular grid with balls of constant radius. Discret. Math. 268(1–3), 31–48 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40 (2004)

    MathSciNet  MATH  Google Scholar 

  4. de Puig, H., Cifuentes Rius, A., Flemister, D., Baxamusa, S.H., Hamad-Schifferli, K.: Selective light-triggered release of DNA from gold nanorods switches blood clotting on and off. PLoS ONE 8(7), 68511 (2013)

    Article  Google Scholar 

  5. Evans, C.G.: Crystals that count! Physical principles and experimental investigations of DNA tile self-assembly. Ph.D. thesis, California Institute of Technology (2014)

    Google Scholar 

  6. Gu, H., Chao, J., Xiao, S.-J., Seeman, N.C.: A proximity-based programmable DNA nanoscale assembly line. Nature 465(7295), 202–205 (2010)

    Article  Google Scholar 

  7. Hamad-Schifferli, K., Schwartz, J.J., Santos, A.T., Zhang, S., Jacobson, J.M.: Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature 415(6868), 152–155 (2002)

    Article  Google Scholar 

  8. Isokawa, T., Peper, F., Kawamata, I., Matsui, N., Murata, S., Hagiya, M.: Universal totalistic asynchonous cellular automaton and its possible implementation by DNA. In: Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726, pp. 182–195. Springer, Cham (2016). doi:10.1007/978-3-319-41312-9_15

    Google Scholar 

  9. Jonoska, N., Seeman, N.C.: Molecular ping-pong Game of Life on a two-dimensional DNA origami array. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 373(2046), 20140215 (2015)

    Article  Google Scholar 

  10. Jonoska, N., Karpenko, D., Seki, S.: Dynamic simulation of 1D cellular automata in the active aTAM. New Gener. Comput. 33, 271–295 (2015)

    Article  MATH  Google Scholar 

  11. Kawamata, I., Yoshizawa, S., Takabatake, F., Sugawara, K., Murata, S.: Discrete DNA reaction-diffusion model for implementing simple cellular automaton. In: Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726, pp. 168–181. Springer, Cham (2016). doi:10.1007/978-3-319-41312-9_14

    Google Scholar 

  12. Liu, W., Zhong, H., Wang, R., Seeman, N.C.: Crystalline two-dimensional DNA-origami arrays. Angew. Chem. 50(1), 264–267 (2011)

    Article  Google Scholar 

  13. Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407(6803), 493–496 (2000)

    Article  Google Scholar 

  14. Padilla, J.E., Sha, R., Kristiansen, M., Chen, J., Jonoska, N., Seeman, N.C.: A signal-passing DNA strand exchange mechanism for the active self-assembly of DNA nanostructures. Angew. Chem. 54(20), 5939–5942 (2015)

    Article  Google Scholar 

  15. Puzynina, S.A.: On periodicity of perfect colorings of the infinite hexagonal and triangular grids. Siberian Math. J. 52(1), 91–104 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Richard, G.: Rule 110: universality and catenations. In: Journees Automates Cellulaires (Proceedings), pp. 141–160 (2008)

    Google Scholar 

  17. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    Article  Google Scholar 

  18. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), e424 (2004)

    Article  Google Scholar 

  19. Scalise, D., Schulman, R.: Emulating cellular automata in chemical reaction-diffusion networks. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 67–83. Springer, Cham (2014). doi:10.1007/978-3-319-11295-4_5

    Google Scholar 

  20. Wu, G., Jonoska, N., Seeman, N.C.: Construction of a DNA nano-object directly demonstrates computation. BioSystems 98(2), 80–84 (2009)

    Article  Google Scholar 

  21. Yang, Y., Endo, M., Hidaka, K., Sugiyama, H.: Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. J. Am. Chem. Soc. 134(51), 20645–20653 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported in part by the NSF grants CCF-1526485 and NIH grant R01 GM109459.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Braun, J., Cruz, D., Jonoska, N. (2017). Platform Color Designs for Interactive Molecular Arrangements. In: Patitz, M., Stannett, M. (eds) Unconventional Computation and Natural Computation. UCNC 2017. Lecture Notes in Computer Science(), vol 10240. Springer, Cham. https://doi.org/10.1007/978-3-319-58187-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58187-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58186-6

  • Online ISBN: 978-3-319-58187-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics