Skip to main content

Real-Time Computability of Real Numbers by Chemical Reaction Networks

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10240))

  • 478 Accesses

Abstract

We explore the class of real numbers that are computed in real time by deterministic chemical reaction networks that are integral in the sense that all their reaction rate constants are positive integers. We say that such a reaction network computes a real number \(\alpha \) in real time if it has a designated species X such that, when all species concentrations are set to zero at time \(t = 0\), the concentration x(t) of X is within \(2^{-t}\) of the fractional part of \(\alpha \) at all times \(t \ge 1\), and the concentrations of all other species are bounded. We show that every algebraic number is real time computable by chemical reaction networks in this sense. We discuss possible implications of this for the 1965 Hartmanis-Stearns conjecture, which says that no irrational algebraic number is real time computable by a Turing machine.

This research was supported in part by National Science Foundation Grants 1247051 and 1545028.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bournez, O., Graça, D.S., Pouly, A.: Polynomial time corresponds to solutions of polynomial ordinary differential equations of polynomial length: the general purpose analog computer and computable analysis are two efficiently equivalent models of computations. In: Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming, Leibniz International Proceedings in Informatics, vol. 55, pp. 109:1–109:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

    Google Scholar 

  2. Brent, R.P.: Fast multiple-precision evaluation of elementary functions. J. ACM (JACM) 23(2), 242–251 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bush, V.: The differential analyzer. A new machine for solving differential equations. J. Frankl. Inst. 212(4), 447–488 (1931)

    Article  MATH  Google Scholar 

  4. Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8(10), 755–762 (2013)

    Article  Google Scholar 

  5. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical reaction networks. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E. (eds.) Algorithmic Bioprocesses. Natural Computing Series, pp. 543–584. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Fischer, P.C., Meyer, A.R., Rosenberg, A.L.: Time-restricted sequence generation. J. Comput. Syst. Sci. 4(1), 50–73 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  7. Graça, D.S., Costa, J.F.: Analog computers and recursive functions over the reals. J. Complex. 19(5), 644–664 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Graça, D.S., Pouly, A.: Computational complexity of solving polynomial differential equations over unbounded domains. Theoret. Comput. Sci. 626(2), 67–82 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Graça, D.S.: Some recent developments on Shannon’s general purpose analog computer. Math. Logic Q. 50(4–5), 473–485 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gurevich, Y., Shelah, S.: Nearly linear time. In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp. 108–118. Springer, Heidelberg (1989). doi:10.1007/3-540-51237-3_10

    Chapter  Google Scholar 

  11. Hárs, V., Tóth, J.: On the inverse problem of reaction kinetics. Qual. Theory Differ. Equ. 30, 363–379 (1981)

    MATH  Google Scholar 

  12. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Trans. Am. Math. Soc. 117, 285–306 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hirsch, M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press, Cambridge (2012)

    MATH  Google Scholar 

  14. Ko, K.-I.: Complexity Theory of Real Functions. Birkhäuser, Basel (1991)

    Book  MATH  Google Scholar 

  15. Lipshitz, L., Rubel, L.A.: A differentially algebraic replacement theorem, and analog computability. Proc. Am. Math. Soc. 99(2), 367–372 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lipton, R.J.: Why the Hartmanis-Stearns conjecture is still open (2012). Blog post. https://rjlipton.wordpress.com/2012/06/15/why-the-hartmanis-stearns-conjecture-is-still-open/. Accessed 3 Feb 2017

  17. Magnasco, M.O.: Chemical kinetics is Turing universal. Phys. Rev. Lett. 78(6), 1190–1193 (1997)

    Article  Google Scholar 

  18. Pour-el, B.M.: Abstract computability and its relations to the general purpose analog computer. Trans. Am. Math. Soc. 199, 1–28 (1974)

    Article  MATH  Google Scholar 

  19. Pouly, A.: Continuous models of computation: from computability to complexity. Ph.D. thesis, École Polytechnique et Universidad do Algarve (2015)

    Google Scholar 

  20. Shannon, C.E.: Mathematical theory of the differential analyzer. Stud. Appl. Math. 20(1–4), 337–354 (1941)

    MathSciNet  MATH  Google Scholar 

  21. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Nat. Acad. Sci. 107(12), 5393–5398 (2010)

    Article  Google Scholar 

  22. Teschl, G.: Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathematics, vol. 140. American Mathematical Society, Providence (2012)

    MATH  Google Scholar 

  23. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 42(1), 230–265 (1936)

    MathSciNet  MATH  Google Scholar 

  24. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. A correction. Proc. Lond. Math. Soc. 43(2), 544–546 (1937)

    MathSciNet  MATH  Google Scholar 

  25. Weihrauch, K.: Computable Analysis: An Introduction. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  26. Weyl, H.: Philosophie der Mathematik und Naturwissenschaft: Nach der 2. Walter de Gruyter GmbH & Co KG (1927). Philosophy of Mathematics and Natural Science, Princeton University Press; with a new introduction by Frank Wilczek (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James I. Lathrop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Huang, X., Klinge, T.H., Lathrop, J.I., Li, X., Lutz, J.H. (2017). Real-Time Computability of Real Numbers by Chemical Reaction Networks. In: Patitz, M., Stannett, M. (eds) Unconventional Computation and Natural Computation. UCNC 2017. Lecture Notes in Computer Science(), vol 10240. Springer, Cham. https://doi.org/10.1007/978-3-319-58187-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58187-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58186-6

  • Online ISBN: 978-3-319-58187-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics