Skip to main content

Superposition as Memory: Unlocking Quantum Automatic Complexity

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10240))

  • 356 Accesses

Abstract

We define the semi-classical quantum automatic complexity \(Q_{s}(x)\) of a word x as the infimum in lexicographic order of those pairs of nonnegative integers (nq) such that there is a subgroup G of the projective unitary group \({{\mathrm{PU}}}(n)\) with \(|G|\le q\) and with \(U_0,U_1\in G\) such that, in terms of a standard basis \(\{e_k\}\) and with \(U_z=\prod _k U_{z(k)}\), we have \(U_x e_1=e_2\) and \(U_y e_1 \ne e_2\) for all \(y\ne x\) with \(|y|=|x|\). We show that \(Q_s\) is unbounded and not constant for strings of a given length. In particular,

$$\begin{aligned} Q_{s}(0^21^2)\le (2,12) < (3,1) \le Q_{s}(0^{60}1^{60}) \end{aligned}$$

and \(Q_s(0^{120})\le (2,121)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Noncommuting, unless x is a unary string like \(0^n\).

References

  1. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: 38th Annual Symposium on Foundations of Computer Science, FOCS 1997, Miami Beach, Florida, USA, 19–22 October 1997, pp. 66–75 (1997). http://dx.doi.org/10.1109/SFCS.1997.646094

  2. Shallit, J., Wang, M.-W.: Automatic complexity of strings. J. Autom. Lang. Comb. 6(4), 537–554 (2001). 2nd Workshop on Descriptional Complexity of Automata, Grammars and Related Structures, London, ON, 2000

    MathSciNet  MATH  Google Scholar 

  3. Kjos-Hanssen, B.: Few paths, fewer words: model selection with automatic structure functions. Exp. Math. (2018). Conditionally accepted. arXiv:1608.01399

  4. Kjos-Hanssen, B.: Shift registers fool finite automata. ArXiv e-prints, July 2016

    Google Scholar 

  5. Shen, A.: Automatic Kolmogorov complexity and normality revisited. ArXiv e-prints, January 2017

    Google Scholar 

  6. Becher, V., Carton, O., Heiber, P.A.: Normality and automata. J. Comput. Syst. Sci. 81(8), 1592–1613 (2015). http://dx.doi.org/10.1016/j.jcss.2015.04.007

    Article  MathSciNet  MATH  Google Scholar 

  7. Calude, C.S., Salomaa, K., Roblot, T.K.: Finite state complexity. Theor. Comput. Sci. 412(41), 5668–5677 (2011). http://dx.doi.org/10.1016/j.tcs.2011.06.021

    Article  MathSciNet  MATH  Google Scholar 

  8. Hyde, K., Kjos-Hanssen, B.: Nondeterministic automatic complexity of overlap-free and almost square-free words. Electron. J. Comb. 22(3), paper 3.22, 18 p. (2015)

    Google Scholar 

  9. Thom, A.: Convergent sequences in discrete groups. Canad. Math. Bull. 56(2), 424–433 (2013). http://dx.doi.org/10.4153/CMB-2011-155-3

    Article  MathSciNet  MATH  Google Scholar 

  10. Hausdorff, F.: Bemerkung über den Inhalt von Punktmengen. Math. Ann. 75(3), 428–433 (1914). http://dx.doi.org/10.1007/BF01563735

    Article  MathSciNet  MATH  Google Scholar 

  11. Świerczkowski, S.: On a free group of rotations of the Euclidean space. Nederl. Akad. Wetensch. Proc. Ser. A 61 = Indag. Math. 20, 376–378 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  12. Świerczkowski, S.: A class of free rotation groups. Indag. Math. (N.S.) 5(2), 221–226 (1994). http://dx.doi.org/10.1016/0019-3577(94)90026-4

    Article  MathSciNet  MATH  Google Scholar 

  13. Collins, M.J.: On Jordan’s theorem for complex linear groups. J. Group Theory 10(4), 411–423 (2007). http://dx.doi.org/10.1515/JGT.2007.032

    Article  MathSciNet  MATH  Google Scholar 

  14. Yuan, Q.: SU(2) and the quaternions, February 2011. https://qchu.wordpress.com/2011/02/12/su2-and-the-quaternions/

  15. Gelfand, I.M., Minlos, R.A., Sapiro, Z.J.: Predstavleniya gruppy vrashcheni i gruppy Lorentsa, ikh primeneniya. Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow (1958)

    Google Scholar 

  16. Parattu,K.M., Wingerter, A.: Tribimaximal mixing from small groups (2011). https://arxiv.org/pdf/1012.2842v2.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjørn Kjos-Hanssen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kjos-Hanssen, B. (2017). Superposition as Memory: Unlocking Quantum Automatic Complexity. In: Patitz, M., Stannett, M. (eds) Unconventional Computation and Natural Computation. UCNC 2017. Lecture Notes in Computer Science(), vol 10240. Springer, Cham. https://doi.org/10.1007/978-3-319-58187-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58187-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58186-6

  • Online ISBN: 978-3-319-58187-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics