Skip to main content

Advances in Reliability Testing and Standards Development for LED Packages and Systems

  • Chapter
  • First Online:
Solid State Lighting Reliability Part 2

Part of the book series: Solid State Lighting Technology and Application Series ((SSLTA,volume 3))

  • 1224 Accesses

Abstract

Currently available reliability test standards (and specifications) for LED packages and systems have mainly been focused on the evaluation of lumen maintenance lifetimes. A brief review on these published standards is given in Sect. 4.1. Then some advanced methods for LED lumen maintenance lifetime estimation by taking into the statistical effects into account are discussed in Sect. 4.2. Afterward Sects. 4.3 and 4.4 in which part of the materials are excerpted from reference (Qian et al., Reliab. Eng. Syst. Saf. 147:84–92, 2016; Qian et al., Prediction of Lumen Depreciation and Color Shift for Phosphor-converted White Light-Emitting Diodes Based on a Spectral Power Distribution Analysis Method, IEEE Access, to Be Published, (n.d.)) present two of the hot topics in the reliability field. In Sect. 4.3, a temperature-driven accelerated test method within 2000 h is proposed instead of the 6000 h test methods to qualify the LED luminaires and lamps with an expected lumen maintenance lifetime of 25,000 h. And in Sect. 4.4, a spectral power distribution (SPD) analysis-based method is proposed to simultaneously predict the lumen depreciation and color shift of phosphor-converted white LEDs (pc-LEDs). In the end, concluding remarks of this chapter are summarized in Sect. 4.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.D. van Driel, X.J. Fan, Solid State Lighting Reliability: Components to Systems (Springer, New York, 2012)

    Google Scholar 

  2. S. Liu, X. Luo, LED Packaging for Lighting Applications (Wiley, Singapore, 2011)

    Book  Google Scholar 

  3. McKinsey & Company, Lighting the Way: Perspectives on the Global Lighting Market, 2nd edn. (McKinsey & Company, 2012)

    Google Scholar 

  4. IESNA TM-16-05, IESNA Technical Memorandum on Light Emitting Diode (LED) Sources and Systems (Illuminating Engineering Society, New York, 2005)

    Google Scholar 

  5. ASSIST Recommendation, LED Life for General Lighting (Lighting Research Center, Troy, 2005)

    Google Scholar 

  6. IESNA LM-80-08, IES Approved Method for Measuring Lumen Maintenance of LED Light Sources (Illuminating Engineering Society, New York, 2008)

    Google Scholar 

  7. IESNA TM-21-11, Projecting Long Term Lumen Maintenance of LED Light Sources (Illuminating Engineering Society, New York, 2011)

    Google Scholar 

  8. IESNA LM-80-15, IES Approved Method for Measuring Luminous Flux and Color Maintenance of LED Packages, Arrays and Modules (Illuminating Engineering Society, New York, 2015)

    Google Scholar 

  9. IESNA LM-84-14, Approved Method for Measuring Luminous Flux and Color Maintenance of LED Lamps, Light Engines, and Luminaires (Illuminating Engineering Society, New York, 2014)

    Google Scholar 

  10. IESNA TM-28-14, Projecting Long-Term Luminous Flux Maintenance of LED Lamps and Luminaires (Illuminating Engineering Society, New York, 2014)

    Google Scholar 

  11. ENERGY STAR®, Program Requirements for Requirements for Integral LED Lamps Eligibility Criteria – Version 1.4 (Energy Star, Washington, 2011)

    Google Scholar 

  12. ENERGY STAR®, Program Requirements for Solid State Lighting Luminaires Eligibility Criteria – Version 1.3 (Energy Star, Washington, 2010)

    Google Scholar 

  13. ENERGY STAR, Program Requirements – Product Specification for Luminaires (Light Fixtures) Eligibility Criteria – Version 1.1 (Energy Star, Washington, 2011)

    Google Scholar 

  14. ENERGY STAR, Program Requirements – Product Specification for Lamps (Light Bulbs) Eligibility Criteria – Version 1.1 (Energy Star, Washington, 2014)

    Google Scholar 

  15. IEC/PAS 62612, Self-Ballasted LED-Lamps for General Lighting Services – Performance Requirements, Edition 1.0 (International Electrotechnical Commission, Geneva, 2009)

    Google Scholar 

  16. IEC/PAS 62717, LED Modules for General Lighting – Performance Requirements, Edition 1.0 (International Electrotechnical Commission, Geneva, 2011)

    Google Scholar 

  17. IEC/PAS 62722-2-1, Luminaire performance – Part 2–1: Particular Requirements for LED Luminaires, Edition 1.0 (International Electrotechnical Commission, Geneva, 2014)

    Google Scholar 

  18. H.A. Qiao, T.C. Pulsipher, J.E. Hathaway, E.E. Richman, E. Radkov, A statistical method to analyze LED lumen depreciation and project useful LED product life, in Proceedings of the IES 2010 Annual Conference, November 9, 2010, Toronto, Ontario. J. Huang, D.S. Golubović, S. Koh, D. Yang, X. Li, X. Fan, G.Q. Zhang, Rapid degradation of mid-power white-light LEDs in saturated moisture conditions, IEEE Trans. Device Mater. Reliab. 15:478–485 (2015)

    Google Scholar 

  19. J. Huang, D.S. Golubović, S. Koh, D. Yang, X. Li, X. Fan, G.Q. Zhang, Degradation mechanisms of mid-power white-light LEDs under high-temperature–humidity conditions. IEEE Trans. Device Mater. Reliab. 15, 220–228 (2015)

    Article  Google Scholar 

  20. G.J. Lu, M.Y. Mehr, W.D. van Driel, X.J. Fan, J.J. Fan, K.M.B. Jansen, G.Q. Zhang, Color shift investigations for LED secondary optical designs: comparison between BPA-PC and PMMA. Opt. Mater. 45, 37–41 (2015)

    Article  Google Scholar 

  21. G.J. Lu, W.D. van Driel, X.J. Fan, M.Y. Mehr, J.J. Fan, K.M.B. Jansen, G.Q. Zhang, Degradation of microcellular PET reflective materials used in LED-based products. Opt. Mater. Opt. Mater. 49, 79–84 (2015)

    Article  Google Scholar 

  22. J.J. Fan, K.C. Yung, M. Pecht, Prognostics of chromaticity state for phosphor-converted white light emitting diodes using an unscented kalman filter approach, IEEE Trans. Device Mater. Reliab. 14:564–573, (2014). J.J. Fan, K.C. Yung, M. Pecht, Prognostics of lumen maintenance for high power white light emitting diodes using a nonlinear filter-based approach, Reliab. Eng. Syst. Saf. 123:63–72 (2014)

    Google Scholar 

  23. J. Fan, K.C. Yung, M. Pecht, Physics-of-failure-based prognostics and health management for high-power white light-emitting diode lighting. IEEE Trans. Device Mater. Reliab. 11, 407–416 (2011)

    Article  Google Scholar 

  24. S.T. Tseng, C.Y. Peng, Stochastic diffusion modeling of degradation data. J. Data Sci. 5, 315–333 (2007)

    Google Scholar 

  25. W.Q. Meeker, L.A. Escobar, C.J. Lu, Accelerated degradation test: modeling and analysis. Technometrics 40, 89–99 (1999)

    Article  Google Scholar 

  26. S.J. Bae, P.H. Kvam, A nonlinear random-coefficients model for degradation testing. Technometrics 46, 460–469 (2004)

    Article  MathSciNet  Google Scholar 

  27. K.A. Doksum, A. Hóyland, Model for variable-stress accelerated life testing experiments based on Wiener processes and the inverse Gaussian distribution. Technometrics 34, 74–82 (1992)

    Article  MATH  Google Scholar 

  28. H.F. Yu, S.T. Tseng, Designing a screening experiment for highly reliable products. Nav. Res. Logist. 49, 514–526 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. S.T. Tseng, J. Tang, I.H. Ku, Determination of burn-in parameters and residuals life of highly reliable products. Nav. Res. Logist. 50, 1–14 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Lawless, M. Crowder, Covariates and random effects in a gamma process model with application to degradation and failure. Lifetime Data Anal. 10, 213–227 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. X. Wang, N. Balakrishnan, B. Guo, Residual life estimation based on a generalized Wiener degradation process. Reliab. Eng. Syst. Saf. 124, 13–23 (2014)

    Article  Google Scholar 

  32. J. Huang, D.S. Golubović, S. Koh, D. Yang, X. Li, X. Fan, G.Q. Zhang, Degradation modeling of mid-power white-light LEDs by using Wiener process. Opt. Express 23, A966–A978 (2015)

    Article  Google Scholar 

  33. J. Huang, D.S. Golubović, S. Koh, D. Yang, X. Li, X. Fan, G.Q. Zhang, Lumen degradation modeling of white-light LEDs in step stress accelerated degradation test. Reliab. Eng. Syst. Saf. 147, 152–159 (2016)

    Article  Google Scholar 

  34. F.K. Wang, Y.C. Lu, Useful lifetime analysis for high-power white LEDs. Microelectron. Reliab. 54, 1307–1315 (2014)

    Article  Google Scholar 

  35. J.J. Fan, K.C. Yung, M. Pecht, Lifetime estimation of high-power white LED using degradation-data-driven method. IEEE Trans. Device Mater. Reliab. 12, 470–477 (2012)

    Article  Google Scholar 

  36. S.T. Tseng, H.F. Yu, A termination rule for degradation experiments. IEEE Trans. Reliab. 46, 130–133 (1997)

    Article  Google Scholar 

  37. H.F. Yu, S.T. Tseng, On-line procedure for terminating an accelerated degradation test. Stat. Sin. 8, 207–220 (1998)

    MATH  Google Scholar 

  38. W.D. van Driel, M. Schuld, B. Jacobs F. Commissaris, Lumen maintenance predictions for LED packages using LM80 data, in Proceedings of International Conference on Thermal, Mechanical and Multi-physics Simulation and Experiments in Microelectronics and Microsystems (IEEE, 2015)

    Google Scholar 

  39. K.I. Hwu, W.C. Tu, Controllable and dimmable AC LED driver based on FPGA to achieve high PF and low THD. IEEE Trans. Ind. Inform. 9, 1330–1342 (2013)

    Article  Google Scholar 

  40. X. Tao, S.Y. Ron Hui, Dynamic photoelectrothermal theory for light-emitting diode systems. IEEE Trans. Ind. Electron. 59, 1751–1759 (2012)

    Article  Google Scholar 

  41. D. Han, Time and cost constrained optimal designs of constant-stress and step-stress accelerated life tests. Reliab. Eng. Syst. Saf. 140, 1–14 (2015)

    Article  Google Scholar 

  42. H. Oh, S. Choi, K. Kim, B.D. Youn, M. Pecht, An empirical model to describe performance degradation for warranty abuse detection in portable electronics. Reliab. Eng. Syst. Saf. 142, 92–99 (2015)

    Article  Google Scholar 

  43. T.C. Ming, P. Singh, Time evolution degradation physics in high power white LEDs under high temperature-humidity conditions. IEEE Trans. Device Mater. Reliab. 14, 742–750 (2014)

    Article  Google Scholar 

  44. X. Luo, B. Wu, S. Liu, Effects of moist environments on LED module reliability. IEEE Trans. Device Mater. Reliab. 10, 182–186 (2010)

    Article  Google Scholar 

  45. S. Chan, W. Hong, K. Kim, Y. Yoon, J. Han, J.S. Jang, Accelerated life test of high power white light emitting diodes based on package failure mechanisms. Microelectron. Reliab. 51, 1806–1809 (2011)

    Article  Google Scholar 

  46. M. Meneghini, L.R. Trevisanello, G. Meneghesso, E. Zanoni, A review on the reliability of GaN-based LEDs. IEEE Trans. Device Mater. Reliab. 8, 323–331 (2008)

    Article  Google Scholar 

  47. VDE-AR-E 2715-1, Measurement and Prediction of Reduction in Luminous Flux of LEDs (German Standard, Frankfurt, 2012)

    Google Scholar 

  48. J.L. Davis, M. Lamvik S. Shepherd, Insights into accelerated aging of SSL luminaires, Proc. SPIE Int. Soc. Opt. Eng. 8835(1):88350L (2013)

    Google Scholar 

  49. W. Nelson, Accelerated Testing: Statistical Methods, Test Plans, and Data Analysis (Wiley, New York, 1990)

    Book  Google Scholar 

  50. M.Y. Mehr, W.D. van Driel, K.M.B. Jansen, P. Deeben, G.Q. Zhang, Lifetime assessment of Bisphenol-A Polycarbonate (BPA-PC) plastic lens, used in LED-based products. Microelectron. Reliab. 54, 138–142 (2014)

    Article  Google Scholar 

  51. S. Koh, C. Yuan, B. Sun, B. Li, X.J. Fan, G.Q. Zhang, Product level accelerated lifetime test for indoor LED luminaires, in Proceedings of Eurosime 2013, Wroclaw, Poland, (2013)

    Google Scholar 

  52. Philips LM-80 Report – LUXEON Rebel (n.d.), http://www.lighting.philips.com/pwc_li/us_en/connect/tools_literature/downloads/LM-80.pdf

  53. Nichia LM-80 Report (n.d.), http://www.arraylighting.com/DL/BR30LM-80.PDF

  54. LM-80 Test Report, (Integrated Service Technology, 2012)

    Google Scholar 

  55. LM-80 Test Report, (Edison Opto Corporation, 2013)

    Google Scholar 

  56. LM-80 Test Report, (OSRAM Opto Semiconductors, 2010)

    Google Scholar 

  57. LM-80 Test Report, (Bay Area Compliance Laboratories Corp. (Dongguan), 2014)

    Google Scholar 

  58. CALiPER Report, Retail Lamps Study 3.2: Lumen and Chromaticity Maintenance of LED A Lamps Operated in Steady-State Conditions (US DOE, Washington, 2014)

    Google Scholar 

  59. H. Chen, S.Y. Hui, Dynamic prediction of correlated color temperature and color rendering index of phosphor-coated white light-emitting diodes. IEEE Trans. Ind. Electron. 61, 784–797 (2014)

    Article  Google Scholar 

  60. X. Feng, W. Xu, Q. Han, S. Zhang, LED light with enhanced color saturation and improved white light perception. Opt. Express 24, 573–585 (2016)

    Article  Google Scholar 

  61. P. Zhong, G. He, M. Zhang, Spectral optimization of the color temperature tunable white light-emitting diode (LED) cluster consisting of direct-emission blue and red LEDs and a diphosphor conversion LED. Opt. Express 20, A684–A693 (2012)

    Article  Google Scholar 

  62. K.H. Loo, Y.M. Lai, S.C. Tan, C.K. Tse, Stationary and adaptive color-shift reduction methods based on the bilevel driving technique for phosphor-converted white LEDs. IEEE Trans. Power Electron. 26, 1943–1953 (2011)

    Article  Google Scholar 

  63. R. Lu, Q. Hong, Z. Ge, S. Wu, Color shift reduction of a multi-domain IPSLCD using RGB-LED backlight. Opt. Express 16, 6243–6252 (2006)

    Article  Google Scholar 

  64. Y. Lin, Z. Deng, Z. Guo, Z. Liu, H. Lan, Y. Lu, Y. Cao, Study on the correlations between color rendering indices and the spectral power distribution. Opt. Express 22, A1029–A1039 (2014)

    Article  Google Scholar 

  65. B.M. Song, B. Han, Spectral power distribution deconvolution scheme for phosphor-converted white light-emitting diode using multiple Gaussian functions. Appl. Opt. 52, 1016–1024 (2013)

    Article  Google Scholar 

  66. M. Chang, C. Chen, D. Das, M. Pecht, Anomaly detection of light-emitting diodes using the similarity-based metric test. IEEE Trans. Ind. Inform. 10, 1852–1863 (2014)

    Article  Google Scholar 

  67. B.M. Song, B. Han, Analytical/experimental hybrid approach based on spectral power distribution for quantitative degradation analysis of phosphor converted LED. IEEE Trans. Device Mater. Reliab. 14, 365–374 (2014)

    Article  Google Scholar 

  68. K. Man I. Ashdown, Accurate colorimetric feedback for RGB LED clusters, Proc. SPIE Int. Soc. Opt. Eng., 6337:633702-633702-8 (2006)

    Google Scholar 

  69. G. He, H. Yan, Optimal spectra of the phosphor-coated white LEDs with excellent color rendering property and high luminous efficacy of radiation. Opt. Express 19, 2519–2529 (2011)

    Article  MathSciNet  Google Scholar 

  70. L. Marsich, L. Moimas, V. Sergo, C. Schmid, Raman spectroscopic study of bioactive silica-based glasses: the role of the alkali/alkali earth ratio on the Non-Bridging Oxygen/Bridging Oxygen (NBO/BO) ratio. Spectroscopy 23, 227–232 (2009)

    Article  Google Scholar 

  71. C. Qian, J.J. Fan, X.J. Fan, A.E. Chernyakov G.Q. Zhang, Lumen and chromaticity maintenance lifetime prediction for LED lamps using a spectral power distribution method, in Proceedings of 12th China International Forum on Solid State Lighting (SSLCHINA 2016)

    Google Scholar 

  72. Spectral Luminous Efficiency Function for Photopic Vision (CIE, 1990)

    Google Scholar 

  73. CIE Colorimetry, 3rd edn (CIE, 2014)

    Google Scholar 

Download references

Acknowledgment

The authors would also like to acknowledge the support of the National High-Tech Research and Development Program of China (863 Program, Grant No. 2015AA03A101) and China Postdoctoral Science Foundation (Grant No. 2015M570133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Qian, C., Fan, J.J., Fan, X., Zhang, G.Q. (2018). Advances in Reliability Testing and Standards Development for LED Packages and Systems. In: van Driel, W., Fan, X., Zhang, G. (eds) Solid State Lighting Reliability Part 2. Solid State Lighting Technology and Application Series, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-58175-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58175-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58174-3

  • Online ISBN: 978-3-319-58175-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics