Skip to main content

Chip-Level Degradation of InGaN-Based Optoelectronic Devices

  • Chapter
  • First Online:
Solid State Lighting Reliability Part 2

Part of the book series: Solid State Lighting Technology and Application Series ((SSLTA,volume 3))

  • 1291 Accesses

Abstract

This chapter reviews the main physical mechanisms responsible for the degradation of InGaN-based optoelectronic devices at chip level. The generation of defects caused by bias and temperature is frequent in modern devices, being responsible for the increase in non-radiative recombination and forward leakage current. Deep level enhancement related to diffusion will also be discussed. The investigation will then move to further processes, such as degradation of the ohmic contacts, electromigration, and device cracking due to mismatch. In addition, we described failure processes related to extrinsic factors, namely, electrostatic discharges and electrical overstresses, along with possible structure improvements that permit to increase device robustness. Finally, degradation caused by reverse bias will be investigated, a topic of growing interest for the design of AC-powered LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, P-type conduction in mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn. J. Appl. Phys. 28., no. Part 2(12), L2112–L2114 (1989). doi:10.1143/JJAP.28.L2112

    Article  Google Scholar 

  2. X. Li, J.J. Coleman, Time-dependent study of low energy electron beam irradiation of Mg-doped GaN grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 69(11), 1605 (1996). doi:10.1063/1.117045

    Article  Google Scholar 

  3. A. Sedhain, J. Li, J.Y. Lin, H.X. Jiang, Nature of deep center emissions in GaN. Appl. Phys. Lett. 96(15), 5–8 (2010). doi:10.1063/1.3389497

    Article  Google Scholar 

  4. D.O. Demchenko, I.C. Diallo, M.A. Reshchikov, Yellow luminescence of gallium nitride generated by carbon defect complexes. Phys. Rev. Lett. 110(8), 1–5 (2013). doi:10.1103/PhysRevLett.110.087404

    Article  Google Scholar 

  5. M. La Grassa, M. Meneghini, C. De Santi, M. Mandurrino, M. Goano, F. Bertazzi, R. Zeisel, B. Galler, G. Meneghesso, E. Zanoni, Ageing of InGaN-based LEDs: effects on internal quantum efficiency and role of defects. Microelectron. Reliab. 55(9), 1775–1778 (2015). doi:10.1016/j.microrel.2015.06.103

    Article  Google Scholar 

  6. D. Schiavon, M. Binder, M. Peter, B. Galler, P. Drechsel, F. Scholz, Wavelength-dependent determination of the recombination rate coefficients in single-quantum-well GaInN/GaN light emitting diodes. Phys. Status Solidi B 250(2), 283–290 (2013). doi:10.1002/pssb.201248286

    Article  Google Scholar 

  7. D.V. Lang, Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45(7), 3023–3032 (1974)

    Article  Google Scholar 

  8. M. Buffolo, C. De Santi, M. Meneghini, D. Rigon, G. Meneghesso, E. Zanoni, Long-term degradation mechanisms of mid-power LEDs for lighting applications. Microelectron. Reliab. 55(9), 1754–1758 (2015). doi:10.1016/j.microrel.2015.06.098

    Article  Google Scholar 

  9. Y. Xi, E.F. Schubert, Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method. Appl. Phys. Lett. 85(12), 2163–2165 (2004). doi:10.1063/1.1795351

    Article  Google Scholar 

  10. M. Auf der Maur, B. Galler, I. Pietzonka, M. Strassburg, H. Lugauer, A. Di Carlo, Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes. Appl. Phys. Lett. 105(13), 133504 (2014). doi:10.1063/1.4896970

    Article  Google Scholar 

  11. M. Mandurrino, G. Verzellesi, M. Goano, M. Vallone, F. Bertazzi, G. Ghione, M. Meneghini, G. Meneghesso, E. Zanoni, Physics-based modeling and experimental implications of trap-assisted tunneling in InGaN/GaN light-emitting diodes. Phys. Status Solidi 212(5), 947–953 (2015). doi:10.1002/pssa.201431743

    Article  Google Scholar 

  12. K. Orita, M. Meneghini, H. Ohno, N. Trivellin, N. Ikedo, S. Takigawa, M. Yuri, T. Tanaka, E. Zanoni, G. Meneghesso, Analysis of diffusion-related gradual degradation of InGaN-based laser diodes. IEEE J. Quantum Electron. 48(9), 1169–1176 (2012). doi:10.1109/JQE.2012.2203795

    Article  Google Scholar 

  13. C. De Santi, M. Meneghini, D. Gachet, G. Mura, M. Vanzi, G. Meneghesso, E. Zanoni, Nanoscale investigation of degradation and wavelength fluctuations in InGaN-based green laser diodes. IEEE Trans. Nanotechnol. 15(2), 274–280 (2016). doi:10.1109/TNANO.2016.2520833

    Article  Google Scholar 

  14. P. Kamyczek, E. Placzek-Popko, V. Kolkovsky, S. Grzanka, R. Czernecki, A deep acceptor defect responsible for the yellow luminescence in GaN and AlGaN. J. Appl. Phys. 111, 113105 (2012). doi:10.1063/1.4725484

    Article  Google Scholar 

  15. T. Ogino, M. Aoki, Mechanism of yellow luminescence in GaN. Jpn. J. Appl. Phys. 19(12), 2395–2405 (1980). doi:10.1063/1.115098

    Article  Google Scholar 

  16. J.L. Lyons, a. Janotti, C.G. Van de Walle, Carbon impurities and the yellow luminescence in GaN. Appl. Phys. Lett. 97(15), 152108 (2010). doi:10.1063/1.3492841

    Article  Google Scholar 

  17. J.L. Lyons, a. Janotti, C.G. Van de Walle, Effects of carbon on the electrical and optical properties of InN, GaN, and AlN. Phys. Rev. B 89(3), 035204 (2014). doi:10.1103/PhysRevB.89.035204

    Article  Google Scholar 

  18. J. Neugebauer, C.G. Van de Walle, Gallium vacancies and the yellow luminescence in GaN. Appl. Phys. Lett. 69(4), 503–505 (1996). doi:10.1063/1.117767

    Article  Google Scholar 

  19. C. De Santi, M. Meneghini, G. Meneghesso, E. Zanoni, Degradation of InGaN laser diodes caused by temperature- and current-driven diffusion processes. Microelectron. Reliab. 64, 623–626 (2016). doi:10.1016/j.microrel.2016.07.118

    Article  Google Scholar 

  20. C.H. Seager, S.M. Myers, A.F. Wright, D.D. Koleske, A.A. Allerman, Drift, diffusion, and trapping of hydrogen in p-type GaN. J. Appl. Phys. 92(12), 7246–7252 (2002). doi:10.1063/1.1520719

    Article  Google Scholar 

  21. Y.S. Puzyrev, T. Roy, M. Beck, B.R. Tuttle, R.D. Schrimpf, D.M. Fleetwood, S.T. Pantelides, Dehydrogenation of defects and hot-electron degradation in GaN high-electron-mobility transistors. J. Appl. Phys. 109(3), 034501 (2011). doi:10.1063/1.3524185

    Article  Google Scholar 

  22. H. Nykänen, S. Suihkonen, L. Kilanski, M. Sopanen, F. Tuomisto, Low energy electron beam induced vacancy activation in GaN. Appl. Phys. Lett. 100(12), 122105 (2012). doi:10.1063/1.3696047

    Article  Google Scholar 

  23. S.J. Pearton, C.R. Abernathy, C.B. Vartuli, J.D. Mackenzie, R.J. Shul, R.G. Wilson, J.M. Zavada, Hydrogen incorporation in GaN, AlN, and InN during Cl2/CH4/H2/Ar ECR plasma etching. Electron. Lett. 31(10), 836–837 (1995). doi:10.1049/el:19950558

    Article  Google Scholar 

  24. Z. Benzarti, I. Halidou, Z. Bougrioua, T. Boufaden, B. El Jani, Magnesium diffusion profile in GaN grown by MOVPE. J. Cryst. Growth 310(14), 3274–3277 (2008). doi:10.1016/j.jcrysgro.2008.04.008

    Article  Google Scholar 

  25. C.J. Pan, G.C. Chi, The doping of GaN with mg diffusion. Solid State Electron. 43(3), 621–623 (1999). doi:10.1016/S0038-1101(98)00289-5

    Article  Google Scholar 

  26. H. Xing, D.S. Green, H. Yu, T. Mates, P. Kozodoy, S. Keller, S.P. Denbaars, U.K. Mishra, Memory effect and redistribution of mg into sequentially regrown GaN layer by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 42(1), 50–53 (2003). doi:10.1143/JJAP.42.50

    Article  Google Scholar 

  27. J.C. Zolper, S.J. Pearton, R.G. Wilson, R.A. Stall, Implant activation and redistribution of dopants in GaN. Proc. 11th Int. Conf. Ion Implant. Technol. 705–708 (1996). doi:10.1109/IIT.1996.586515

  28. K. Harafuji, K. Kawamura, Magnesium diffusion at dislocation in wurtzite-type GaN crystal. Jpn. J. Appl. Phys. 44(9A), 6495–6504 (2005). doi:10.1143/JJAP.44.6495

    Article  Google Scholar 

  29. K. Harafuji, T. Tsuchiya, K. Kawamura, Magnesium diffusion in wurtzite-type GaN crystal. Jpn. J. Appl. Phys. 0(7), 2240–2243 (2003). doi:10.1002/pssc.200303298

    Google Scholar 

  30. K. Harafuji, T. Tsuchiya, K. Kawamura, Molecular dynamics of magnesium diffusion in Wurtzite-type GaN crystal. Jpn. J. Appl. Phys. 43(2), 522–531 (2004). doi:10.1143/JJAP.43.522

    Article  Google Scholar 

  31. S.M. Myers, A.F. Wright, G.A. Petersen, C.H. Seager, W.R. Wampler, M.H. Crawford, J. Han, Equilibrium state of hydrogen in gallium nitride: theory and experiment. J. Appl. Phys. 88(8), 4676–4687 (2000). doi:10.1063/1.1309123

    Article  Google Scholar 

  32. S.M. Myers, A.F. Wright, Theoretical description of H behavior in GaN p-n junctions. J. Appl. Phys. 90(11), 5612–5622 (2001). doi:10.1063/1.1413950

    Article  Google Scholar 

  33. W.R. Wampler, S.M. Myers, Hydrogen release from magnesium-doped GaN with clean ordered surfaces. J. Appl. Phys. 94(9), 5682–5687 (2003). doi:10.1063/1.1616986

    Article  Google Scholar 

  34. C.G. Van de Walle, N.M. Johnson, in Semiconductors and Semimetals, vol 57, ed. by J.I. Pankove, T.D. Moustakas. Hydrogen in III–V nitrides (Academic, Boston, 1999), pp. 157–184

    Google Scholar 

  35. M. Meneghini, S. Podda, A. Morelli, R. Pintus, L. Trevisanello, G. Meneghesso, M. Vanzi, E. Zanoni, High brightness GaN LEDs degradation during dc and pulsed stress. Microelectron. Reliab. 46(9–11), 1720–1724 (2006). doi:10.1016/j.microrel.2006.07.050

    Article  Google Scholar 

  36. M. Meneghini, L. Trevisanello, U. Zehnder, T. Zahner, U. Strauss, G. Meneghesso, E. Zanoni, High-temperature degradation of GaN LEDs related to passivation. IEEE Trans. Electron Devices 53(12), 2981–2987 (2006). doi:10.1109/TED.2006.885544

    Article  Google Scholar 

  37. M. Meneghini, L.-R. Trevisanello, U. Zehnder, G. Meneghesso, E. Zanoni, Reversible degradation of Ohmic contacts on p-GaN for application in high-brightness LEDs. IEEE Trans. Electron Devices 54(12), 3245–3251 (2007). doi:10.1109/TED.2007.908900

    Article  Google Scholar 

  38. H. Omiya, F.A. Ponce, H. Marui, S. Tanaka, T. Mukai, Atomic arrangement at the Au/p-GaN interface in low-resistance contacts. Appl. Phys. Lett. 85(25), 6143 (2004). doi:10.1063/1.1840105

    Article  Google Scholar 

  39. L. Stafford, L.F. Voss, S.J. Pearton, H.T. Wang, F. Ren, Improved long-term thermal stability of InGaN∕GaN multiple quantum well light-emitting diodes using TiB2- and Ir-based p-Ohmic contacts. Appl. Phys. Lett. 90(24), 242103 (2007). doi:10.1063/1.2748306

    Article  Google Scholar 

  40. D.L. Barton, J. Zeller, B.S. Phillips, Pei-Chih Chiu, S. Askar, Dong-Seung Lee, M. Osinski, K.J. Malloy, in 33rd IEEE International Reliability Physics Symposium. Degradation of blue AlGaN/InGaN/GaN LEDs subjected to high current pulses (1995), pp. 191–199, doi:10.1109/RELPHY.1995.513674

  41. M. Osiński, J. Zeller, P.-C. Chiu, B. Scott Phillips, D.L. Barton, AlGaN/InGaN/GaN blue light emitting diode degradation under pulsed current stress. Appl. Phys. Lett. 69(7), 898 (1996). doi:10.1063/1.116936

    Article  Google Scholar 

  42. H. Kim, H. Yang, C. Huh, S.-W. Kim, S.-J. Park, H. Hwang, Electromigration-induced failure of GaN multi-quantum well light emitting diode. Electron. Lett. 36(10), 908 (2000). doi:10.1049/el:20000657

    Article  Google Scholar 

  43. C.-Y. Hsu, W.-H. Lan, Y.S. Wu, Effect of thermal annealing of Ni/Au ohmic contact on the leakage current of GaN based light emitting diodes. Appl. Phys. Lett. 83(12), 2447 (2003). doi:10.1063/1.1601306

    Article  Google Scholar 

  44. L. Liu, L. Yin, D. Teng, J. Zhang, X. Ma, G. Wang, An explanation for catastrophic failures of GaN-based vertical structure LEDs subjected to thermoelectric stressing. J. Phys. D 48(30), 305102 (2015). doi:10.1088/0022-3727/48/30/305102

    Article  Google Scholar 

  45. A. Krost, A. Dadgar, GaN-based optoelectronics on silicon substrates. Mater. Sci. Eng. B 93(1–3), 77–84 (2002). doi:10.1016/S0921-5107(02)00043-0

    Article  Google Scholar 

  46. A. Sarua, S. Rajasingam, M. Kuball, C. Younes, B. Yavich, W.N. Wang, High temperature annealing of AlGaN: stress and composition changes. Phys. Status Solidi 1, 568–571 (2003). doi:10.1002/pssc.200390115

    Article  Google Scholar 

  47. D.L. Barton, M. Osinski, P. Perlin, C.J. Helms, N.H. Berg, in 1997 I.E. International Reliability Physics Symposium Proceedings. 35th Annual . Life tests and failure mechanisms of GaN/AlGaN/InGaN light emitting diodes (1997), pp. 276–281. doi:10.1109/RELPHY.1997.584273

  48. N.P. Kobayashi, J.T. Kobayashi, P.D. Dapkus, W.-J. Choi, A.E. Bond, X. Zhang, D.H. Rich, GaN growth on Si(111) substrate using oxidized AlAs as an intermediate layer. Appl. Phys. Lett. 71(24), 3569 (1997). doi:10.1063/1.120394

    Article  Google Scholar 

  49. A. Strittmatter, A. Krost, M. Straßburg, V. Türck, D. Bimberg, J. Bläsing, J. Christen, Low-pressure metal organic chemical vapor deposition of GaN on silicon(111) substrates using an AlAs nucleation layer. Appl. Phys. Lett. 74(9), 1242 (1999). doi:10.1063/1.123512

    Article  Google Scholar 

  50. H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 48(5), 353 (1986). doi:10.1063/1.96549

    Article  Google Scholar 

  51. H. Lahrèche, P. Vennéguès, O. Tottereau, M. Laügt, P. Lorenzini, M. Leroux, B. Beaumont, P. Gibart, Optimisation of AlN and GaN growth by metalorganic vapour-phase epitaxy (MOVPE) on Si (111). J. Cryst. Growth 217(1–2), 13–25 (2000). doi:10.1016/S0022-0248(00)00478-4

    Article  Google Scholar 

  52. A.T. Schremer, J.A. Smart, Y. Wang, O. Ambacher, N.C. MacDonald, J.R. Shealy, High electron mobility AlGaN/GaN heterostructure on (111) Si. Appl. Phys. Lett. 76(6), 736 (2000). doi:10.1063/1.125878

    Article  Google Scholar 

  53. H. Amano, M. Iwaya, N. Hayashi, T. Kashima, S. Nitta, C. Wetzel, I. Akasaki, Control of dislocations and stress in AlGaN on sapphire using a low temperature interlayer. Phys. Status Solidi 216(1), 683–689 (1999). doi:10.1002/(SICI)1521-3951(199911)216:1<683::AID-PSSB683>3.0.CO;2-4

    Article  Google Scholar 

  54. A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, A. Krost, Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 μm in thickness. Jpn. J. Appl. Phys. 39., no. Part 2(11B), L1183–L1185 (2000). doi:10.1143/JJAP.39.L1183

    Article  Google Scholar 

  55. A. Reiher, J. Bläsing, A. Dadgar, A. Diez, A. Krost, Efficient stress relief in GaN heteroepitaxy on Si(111) using low-temperature AlN interlayers. J. Cryst. Growth 248, 563–567 (2003). doi:10.1016/S0022-0248(02)01880-8

    Article  Google Scholar 

  56. K. Cheng, M. Leys, S. Degroote, M. Germain, G. Borghs, High quality GaN grown on silicon(111) using a SixNy interlayer by metal-organic vapor phase epitaxy. Appl. Phys. Lett. 92(19), 192111 (2008). doi:10.1063/1.2928224

    Article  Google Scholar 

  57. H. Marchand, L. Zhao, N. Zhang, B. Moran, R. Coffie, U.K. Mishra, J.S. Speck, S.P. DenBaars, J.A. Freitas, Metalorganic chemical vapor deposition of GaN on Si(111): stress control and application to field-effect transistors. J. Appl. Phys. 89(12), 7846 (2001). doi:10.1063/1.1372160

    Article  Google Scholar 

  58. K. Cheng, M. Leys, S. Degroote, B. Van Daele, S. Boeykens, J. Derluyn, M. Germain, G. Van Tendeloo, J. Engelen, G. Borghs, Flat GaN epitaxial layers grown on Si(111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers. J. Electron. Mater. 35(4), 592–598 (2006). doi:10.1007/s11664-006-0105-1

    Article  Google Scholar 

  59. J. Lee, Y. Tak, J.-Y. Kim, H.-G. Hong, S. Chae, B. Min, H. Jeong, J. Yoo, J.-R. Kim, Y. Park, Growth of high-quality InGaN/GaN LED structures on (111) Si substrates with internal quantum efficiency exceeding 50%. J. Cryst. Growth 315(1), 263–266 (2011). doi:10.1016/j.jcrysgro.2010.08.006

    Article  Google Scholar 

  60. P. Saengkaew, A. Dadgar, J. Blaesing, T. Hempel, P. Veit, J. Christen, A. Krost, Low-temperature/high-temperature AlN superlattice buffer layers for high-quality AlxGa1−xN on Si (111). J. Cryst. Growth 311(14), 3742–3748 (2009). doi:10.1016/j.jcrysgro.2009.04.038

    Article  Google Scholar 

  61. S.-H. Jang, C.-R. Lee, High-quality GaN/Si(111) epitaxial layers grown with various Al0.3Ga0.7N/GaN superlattices as intermediate layer by MOCVD. J. Cryst. Growth 253(1–4), 64–70 (2003). doi:10.1016/S0022-0248(03)01015-7

    Article  Google Scholar 

  62. E. Feltin, B. Beaumont, M. Laugt, P. de Mierry, P. Vennegues, M. Leroux, P. Gibart, Crack-free thick GaN layers on silicon (111) by metalorganic vapor phase epitaxy. Phys. Status Solidi 188(2), 531–535 (2001). doi:10.1002/1521-396X(200112)188:2<531::AID-PSSA531>3.0.CO;2-V

    Article  Google Scholar 

  63. L. Zhang, W.-S. Tan, S. Westwater, A. Pujol, A. Pinos, S. Mezouari, K. Stribley, J. Whiteman, J. Shannon, K. Strickland, High brightness GaN-on-Si based blue LEDs grown on 150 mm Si substrates using thin buffer layer technology. IEEE J. Electron Devices Soc. 3(6), 457–462 (2015). doi:10.1109/JEDS.2015.2463738

    Article  Google Scholar 

  64. Y. Honda, Y. Kuroiwa, M. Yamaguchi, N. Sawaki, Growth of GaN free from cracks on a (111)Si substrate by selective metalorganic vapor-phase epitaxy. Appl. Phys. Lett. 80(2), 222 (2002). doi:10.1063/1.1432764

    Article  Google Scholar 

  65. J. Xu, L. Chen, L. Yu, H. Liang, B.L. Zhang, K.M. Lau, Temperature dependence of cathodoluminescence spectra and stress analysis of a GaN layer grown on a mesa structured Si substrate. J. Appl. Phys. 102(10), 104508 (2007). doi:10.1063/1.2817614

    Article  Google Scholar 

  66. S.-J. Lee, G.H. Bak, S.-R. Jeon, S.H. Lee, S.-M. Kim, S.H. Jung, C.-R. Lee, I.-H. Lee, S.-J. Leem, J.H. Baek, Epitaxial growth of crack-free GaN on patterned Si(111) substrate. Jpn. J. Appl. Phys. 47(4), 3070–3073 (2008). doi:10.1143/JJAP.47.3070

    Article  Google Scholar 

  67. T. Boufaden, A. Matoussi, S. Guermazi, S. Juillaguet, A. Toureille, Y. Mlik, B. El Jani, Optical properties of GaN grown on porous silicon substrate. Phys. Status Solidi 201(3), 582–587 (2004). doi:10.1002/pssa.200306740

    Article  Google Scholar 

  68. K. Cheng, S. Degroote, M. Leys, B. Van Daele, M. Germain, G. Van Tendeloo, G. Borghs, Single crystalline GaN grown on porous Si(111) by MOVPE. Phys. Status Solidi 4(6), 1908–1912 (2007). doi:10.1002/pssc.200674316

    Article  Google Scholar 

  69. H. Ishikawa, K. Shimanaka, F. Tokura, Y. Hayashi, Y. Hara, M. Nakanishi, MOCVD growth of GaN on porous silicon substrates. J. Cryst. Growth 310(23), 4900–4903 (2008). doi:10.1016/j.jcrysgro.2008.08.030

    Article  Google Scholar 

  70. A.H. Blake, D. Caselli, C. Durot, J. Mueller, E. Parra, J. Gilgen, A. Boley, D.J. Smith, I.S.T. Tsong, J.C. Roberts, E. Piner, K. Linthicum, J.W. Cook, D.D. Koleske, M.H. Crawford, A.J. Fischer, InGaN/GaN multiple-quantum-well light-emitting diodes grown on Si(111) substrates with ZrB2(0001) buffer layers. J. Appl. Phys. 111(3), 033107 (2012). doi:10.1063/1.3684557

    Article  Google Scholar 

  71. G. Meneghesso, A. Chini, A. Maschietto, E. Zanoni, P. Malberti, M. Ciappa, in Electrical Overstress/Electrostatic Discharge Symposium, 2001. EOS/ESD ‘01 . Electrostatic discharge and electrical overstress on GaN/InGaN light emitting diodes (2001), pp. 247–252

    Google Scholar 

  72. S.-M. Kim, H.S. Oh, J.H. Baek, T.-Y. Park, G.Y. Jung, Negative-voltage electrostatic discharge characteristics of blue light-emitting diodes using an extended n-electrode onto plasma treated p-GaN. Appl. Phys. Express 4(7), 072102 (2011). doi:10.1143/APEX.4.072102

    Article  Google Scholar 

  73. M. Meneghini, A. Tazzoli, G. Mura, G. Meneghesso, E. Zanoni, A review on the physical mechanisms that limit the reliability of GaN-based LEDs. IEEE Trans. Electron Devices 57(1), 108–118 (2010). doi:10.1109/TED.2009.2033649

    Article  Google Scholar 

  74. M. Meneghini, A. Tazzoli, E. Ranzato, N. Trivellin, G. Meneghesso, E. Zanoni, M. Pavesi, M. Manfredi, R. Butendeich, U. Zehnder, B. Hahn, A study of the failure of GaN-based LEDs submitted to reverse-bias stress and ESD events. 2010 I.E. Int. Reliab. Phys. Symp. 522–527 (2010). doi:10.1109/IRPS.2010.5488776

  75. Y.K. Su, S.J. Chang, S.C. Wei, ESD engineering of nitride-based LEDs. IEEE Trans. Device Mater. Reliab. 5(2), 277–281 (2005). doi:10.1109/TDMR.2005.847197

    Article  Google Scholar 

  76. C.M. Tsai, J.K. Sheu, P.T. Wang, W.C. Lai, S.C. Shei, S.J. Chang, C.H. Kuo, C.W. Kuo, Y.K. Su, High efficiency and improved ESD characteristics of GaN-based LEDs with naturally textured surface grown by MOCVD. IEEE Photon. Technol. Lett. 18(11), 1213–1215 (2006). doi:10.1109/LPT.2006.875063

    Article  Google Scholar 

  77. S. Kitamura, K. Hiramatsu, N. Sawaki, Fabrication of GaN hexagonal pyramids on dot-patterned GaN/sapphire substrates via selective metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys. 34., no. Part 2(9B), L1184–L1186 (1995). doi:10.1143/JJAP.34.L1184

    Article  Google Scholar 

  78. D.I. Florescu, S.M. Ting, J.C. Ramer, D.S. Lee, V.N. Merai, A. Parkeh, D. Lu, E.A. Armour, L. Chernyak, Investigation of V-defects and embedded inclusions in InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition on (0001) sapphire. Appl. Phys. Lett. 83(1), 33 (2003). doi:10.1063/1.1588370

    Article  Google Scholar 

  79. S.M. Ting, J.C. Ramer, D.I. Florescu, V.N. Merai, B.E. Albert, A. Parekh, D.S. Lee, D. Lu, D.V. Christini, L. Liu, E.A. Armour, Morphological evolution of InGaN/GaN quantum-well heterostructures grown by metalorganic chemical vapor deposition. J. Appl. Phys. 94(3), 1461 (2003). doi:10.1063/1.1586972

    Article  Google Scholar 

  80. P. Li, H. Li, Y. Zhao, J. Kang, Z. Li, Z. Liu, X. Yi, J. Li, G. Wang, Excellent ESD resistance property of InGaN LEDs with enhanced internal capacitance. IEEE Photon. Technol. Lett. 27(19), 2004–2006 (2015). doi:10.1109/LPT.2015.2448418

    Article  Google Scholar 

  81. S.-K. Jeon, J.-G. Lee, E.-H. Park, J. Jang, J.-G. Lim, S.-K. Kim, J.-S. Park, The effect of the internal capacitance of InGaN-light emitting diode on the electrostatic discharge properties. Appl. Phys. Lett. 94(13), 131106 (2009). doi:10.1063/1.3114974

    Article  Google Scholar 

  82. C. Jia, C. Zhong, T. Yu, Z. Wang, Y. Tong, G. Zhang, Improvement of electrostatic discharge characteristics of InGaN/GaN MQWs light-emitting diodes by inserting an n+-InGaN electron injection layer and a p-InGaN/GaN hole injection layer. Semicond. Sci. Technol. 27(6), 065008 (2012). doi:10.1088/0268-1242/27/6/065008

    Article  Google Scholar 

  83. M. Meneghini, A. Tazzoli, R. Butendeich, B. Hahn, G. Meneghesso, E. Zanoni, Soft and hard failures of InGaN-based LEDs submitted to electrostatic discharge testing. IEEE Electron Device Lett. 31(6), 579–581 (2010). doi:10.1109/LED.2010.2045874

    Article  Google Scholar 

  84. M. Dal Lago, M. Meneghini, C. De Santi, M. Barbato, N. Trivellin, G. Meneghesso, E. Zanoni, ESD on GaN-based LEDs: an analysis based on dynamic electroluminescence measurements and current waveforms. Microelectron. Reliab. 54(9–10), 2138–2141 (2014). doi:10.1016/j.microrel.2014.07.122

    Article  Google Scholar 

  85. C.-H. Chen, S.-J. Chang, Y.-K. Su, High electrostatic discharge protection of InGaN/GaN MQW LEDs by using GaN Schottky diodes. Phys. Status Solidi 200(1), 91–94 (2003). doi:10.1002/pssa.200303496

    Article  Google Scholar 

  86. T.C. Wen, S.J. Chang, Y.K. Su, L.W. Wu, C.H. Kuo, Y.P. Hsu, W.C. Lai, J.K. Sheu, Improved ESD reliability by using a modulation doped Al0.12Ga0.88N/GaN superlattice in nitride-based LED. Int. Semicond. Device Res. Symp. 2003 77–78 (2003). doi:10.1109/ISDRS.2003.1272004.

  87. Y.J. Liu, C.H. Yen, L.Y. Chen, T.H. Tsai, T.Y. Tsai, W.C. Liu, On a GaN-based light-emitting diode with a p-GaN/i-InGaN superlattice structure. IEEE Electron Device Lett. 30(11), 1149–1151 (2009). doi:10.1109/LED.2009.2030140

    Article  Google Scholar 

  88. S.-C. Shei, J.-K. Sheu, C.-F. Shen, Improved reliability and ESD characteristics of Flip-Chip GaN-based LEDs with internal inverse-parallel protection diodes. IEEE Electron Device Lett. 28(5), 346–349 (2007). doi:10.1109/LED.2007.895428

    Article  Google Scholar 

  89. H.H. Jeong, S.Y. Lee, J.-H. Bae, K.K. Choi, J.-O. Song, S.J. Son, Y.-H. Lee, T.-Y. Seong, Improved electrostatic discharge protection in GaN-based vertical light-emitting diodes by an internal diode. IEEE Photon. Technol. Lett. 23(7), 423–425 (2011). doi:10.1109/LPT.2011.2106204

    Article  Google Scholar 

  90. C.-H. Jang, J.K. Sheu, C.M. Tsai, S.C. Shei, W.C. Lai, S.J. Chang, Effect of thickness of the p-AlGaN electron blocking layer on the improvement of ESD characteristics in GaN-based LEDs. IEEE Photon. Technol. Lett. 20(13), 1142–1144 (2008). doi:10.1109/LPT.2008.924886

    Article  Google Scholar 

  91. T.Y. Park, M.S. Oh, S.J. Park, Improvement of electrostatic discharge characteristics and optical properties of GaN-based light-emitting diodes. IEEE Electron Device Lett. 30(9), 937–939 (2009). doi:10.1109/LED.2009.2025783

    Article  Google Scholar 

  92. P.C. Tsai, W.R. Chen, Y.K. Su, Enhanced ESD properties of GaN-based light-emitting diodes with various MOS capacitor designs. Superlattice. Microst. 48(1), 23–30 (2010). doi:10.1016/j.spmi.2010.04.006

    Article  Google Scholar 

  93. S.L. Chen, Enhanced electrostatic discharge reliability in GaN-based light-emitting diodes by the electrode engineering. J. Disp. Technol. 10(10), 807–813 (2014). doi:10.1109/JDT.2014.2321460

    Article  Google Scholar 

  94. X.-H. Huang, J.-P. Liu, Y.-M. Fan, J.-J. Kong, H. Yang, H.-B. Wang, Improving InGaN-LED performance by optimizing the patterned sapphire substrate shape. Chinese Phys. B 21(3), 037105 (2012). doi:10.1088/1674-1056/21/3/037105

    Article  Google Scholar 

  95. K.H. Lee, Y.-T. Moon, S.K. Oh, J.S. Kwak, High efficiency and ESD of GaN-based LEDs with patterned ion-damaged current blocking layer. IEEE Photon. Technol. Lett. 27(2), 149–152 (2015). doi:10.1109/LPT.2014.2362982

    Article  Google Scholar 

  96. M. Dal Lago, M. Meneghini, N. Trivellin, G. Mura, M. Vanzi, G. Meneghesso, E. Zanoni, ‘Hot-plugging’ of LED modules: electrical characterization and device degradation. Microelectron. Reliab. 53(9–11), 1524–1528 (2013). doi:10.1016/j.microrel.2013.07.054

    Article  Google Scholar 

  97. M. Meneghini, C. De Santi, M. Buffolo, A. Munaretto, G. Meneghesso, E. Zanoni, in 2015 12th China International Forum on Solid State Lighting (SSLCHINA). Towards high reliability GaN LEDs: understanding the physical origin of gradual and catastrophic failure (2015), pp. 63–66. doi:10.1109/SSLCHINA.2015.7360690

  98. H.-H. Yen, W.-Y. Yeh, H.-C. Kuo, GaN alternating current light-emitting device. Phys. Status Solidi 204(6), 2077–2081 (2007). doi:10.1002/pssa.200674766

    Article  Google Scholar 

  99. J. Cho, J. Jung, J.H. Chae, H. Kim, H. Kim, J.W. Lee, S. Yoon, C. Sone, T. Jang, Y. Park, E. Yoon, Alternating-current light emitting diodes with a diode bridge circuitry. Jpn. J. Appl. Phys. 46(48), L1194–L1196 (2007). doi:10.1143/JJAP.46.L1194

    Article  Google Scholar 

  100. H.-H. Yen, H.-C. Kuo, W.-Y. Yeh, Characteristics of single-chip GaN-based alternating current light-emitting diode. Jpn. J. Appl. Phys. 47(12), 8808–8810 (2008). doi:10.1143/JJAP.47.8808

    Article  Google Scholar 

  101. G.A. Onushkin, Y.-J. Lee, J.-J. Yang, H.-K. Kim, J.-K. Son, G.-H. Park, Y. Park, Efficient alternating current operated white light-emitting diode chip. IEEE Photon. Technol. Lett. 21(1), 33–35 (2009). doi:10.1109/LPT.2008.2008204

    Article  Google Scholar 

  102. H.H. Yen, H.C. Kuo, W.Y. Yeh, Particular failure mechanism of GaN-based alternating current light-emitting diode induced by GaOx oxidation. IEEE Photon. Technol. Lett. 22(15), 1168–1170 (2010). doi:10.1109/LPT.2010.2051424

    Article  Google Scholar 

  103. W.Y. Yeh, H.H. Yen, Y.J. Chan, The development of monolithic alternating current light-emitting diode. SPIE OPTO 793910–793912 (2011). doi:10.1117/12.873668

  104. Y. Gao, H. Zhang, X. Guo, F. Cao, J. Yu, A. Chen, N. Zou, Method to design alternating current light-emitting diodes luminous flux. Opt. Quant. Electron. 47(12), 3715–3727 (2015). doi:10.1007/s11082-015-0241-z

    Article  Google Scholar 

  105. H. Chen, B. Yun Huang, Y. Cheng Chu, Degradation mechanisms in GaN light-emitting diodes undergoing reverse-bias operations in water vapor. Appl. Phys. Lett. 103(17), 8–11 (2013). doi:10.1063/1.4826254

    Google Scholar 

  106. M. Meneghini, U. Zehnder, B. Hahn, G. Meneghesso, E. Zanoni, Degradation of high-brightness green LEDs submitted to reverse electrical stress. IEEE Electron Device Lett. 30(10), 1051–1053 (2009). doi:10.1109/LED.2009.2029129

    Article  Google Scholar 

  107. C. De Santi, M. Meneghini, M. Buffolo, G. Meneghesso, E. Zanoni, Experimental demonstration of time-dependent breakdown in GaN-based light emitting diodes. IEEE Electron Device Lett. 37(5), 611–614 (2016). doi:10.1109/LED.2016.2543805

    Article  Google Scholar 

  108. R. Degraeve, G. Groeseneken, R. Bellens, J.L. Ogier, M. Depas, P.J. Roussel, H.E. Maes, New insights in the relation between electron trap generation and the statistical properties of oxide breakdown. IEEE Trans. Electron Devices 45(4), 904–911 (1998). doi:10.1109/16.662800

    Article  Google Scholar 

  109. J.H. Stathis, Percolation models for gate oxide breakdown. J. Appl. Phys. 86(10), 5757 (1999). doi:10.1063/1.371590

    Article  Google Scholar 

  110. T. Kauerauf, R. Degraeve, M.B. Zahid, M. Cho, B. Kaczer, P. Roussel, G. Groeseneken, H. Maes, S. De Gendt, Abrupt breakdown in dielectric/metal gate stacks: a potential reliability limitation? IEEE Electron Device Lett. 26(10), 773–775 (2005). doi:10.1109/LED.2005.856015

    Article  Google Scholar 

  111. D. Marcon, T. Kauerauf, F. Medjdoub, J. Das, M. Van Hove, P. Srivastava, K. Cheng, M. Leys, R. Mertens, S. Decoutere, G. Meneghesso, E. Zanoni, G. Borghs, in 2010 International Electron Devices Meeting. A comprehensive reliability investigation of the voltage-, temperature- and device geometry-dependence of the gate degradation on state-of-the-art GaN-on-Si HEMTs (2010), pp. 20.3.1–20.3.4. doi:10.1109/IEDM.2010.5703398

  112. M. Meneghini, O. Hilt, C. Fleury, R. Silvestri, M. Capriotti, G. Strasser, D. Pogany, E. Bahat-Treidel, F. Brunner, A. Knauer, J. Würfl, I. Rossetto, E. Zanoni, G. Meneghesso, S. Dalcanale, Normally-off GaN-HEMTs with p-type gate: off-state degradation, forward gate stress and ESD failure. Microelectron. Reliab. (2015). doi:10.1016/j.microrel.2015.11.026

    Google Scholar 

  113. M. Ťapajna, O. Hilt, E. Bahat-Treidel, J. Würfl, J. Kuzmík, Investigation of gate-diode degradation in normally-off p-GaN/AlGaN/GaN high-electron-mobility transistors. Appl. Phys. Lett. 107(19), 193506 (2015). doi:10.1063/1.4935223

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Zanoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

De Santi, C., Meneghini, M., Meneghesso, G., Zanoni, E. (2018). Chip-Level Degradation of InGaN-Based Optoelectronic Devices. In: van Driel, W., Fan, X., Zhang, G. (eds) Solid State Lighting Reliability Part 2. Solid State Lighting Technology and Application Series, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-58175-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58175-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58174-3

  • Online ISBN: 978-3-319-58175-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics