Skip to main content

Advances in LED Solder Joint Reliability Testing and Prediction

  • Chapter
  • First Online:
Solid State Lighting Reliability Part 2

Part of the book series: Solid State Lighting Technology and Application Series ((SSLTA,volume 3))

Abstract

Solder reliability in LED assemblies is proven to be very critical for a reliable solid-state lighting system. Evaluation of the reliability in a fast way becomes a cutting edge of the industry, which can greatly diminish the design cycle and hence reduce the time to market. This chapter introduces two methodologies of doing fast reliability qualification of solder joint in LED assemblies: FEM-assisted lifetime estimation modeling and in situ high-precision fatigue damage-based lifetime prediction. These two methods can be also useful for RUL prognostic and quality screening test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.D. van Driel, X.J. Fan, Solid State Lighting Reliability: Components to Systems (Springer, New York, 2012)

    Google Scholar 

  2. W.D. van Driel, C.A. Yuan, S. Koh, G.Q. Zhang, LED system reliability, in Thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems (EuroSimE), 2011 12th international conference on, (2011), pp. 1/5–5/5

    Google Scholar 

  3. H.U. Akay, N.H. Paydar, A. Bilgic, Fatigue life predictions for thermally loaded solder joints using a volume-weighted averaging technique. J. Electron. Packag. 119, 228–235 (1997)

    Article  Google Scholar 

  4. A. Schubert, R. Dudek, E. Auerswald, A. Gollbardt, B. Michel, H. Reichl, Fatigue life models for SnAgCu and SnPb solder joints evaluated by experiments and simulation, in Components and Technology Conference, 2003. Proceedings. 53rd (2003), pp. 603–610

    Google Scholar 

  5. E. Madenci, I. Guven, B. Kilic, Fatigue Life Prediction of Solder Joints in Electronic Packages With Ansys (Kluwer Academic Publishers, 2003).

    Google Scholar 

  6. P. Lall, M.N. Islam, N. Singh, J.C. Suhling, R. Darveaux, Model for BGA and CSP reliability in automotive underhood applications. Components Packag. Technol. IEEE Trans. 27, 585–593 (2004)

    Article  Google Scholar 

  7. P. Lall, M.N. Islam, M.K. Rahim, J.C. Suhling, Prognostics and health management of electronic packaging. Components Packag. Technol. IEEE Trans. 29, 666–677 (2006)

    Article  Google Scholar 

  8. N. Patil, D. Das, Y. Chunyan, L. Hua, C. Bailey, M. Pecht, A fusion approach to IGBT power module prognostics, in Thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems, 2009. EuroSimE 2009. 10th international conference on, (2009), pp. 1–5

    Google Scholar 

  9. J. P. Hofmeister, P. Lall, E. Ortiz, D. Goodman, J. Judkins, Real-time detection of solder-joint faults in operational field programmable gate arrays, in Aerospace Conference, 2007 IEEE, (2007), pp. 1–9

    Google Scholar 

  10. J. Johansson, P. Leisner, Prognostics of thermal fatigue failure of solder joints in avionic equipment. Aerosp. Electron. Syst. Mag. IEEE 27, 16–24 (2012)

    Article  Google Scholar 

  11. W.W. Lee, L.T. Nguyen, G.S. Selvaduray, Solder joint fatigue models: review and applicability to chip scale packages. Microelectron. Reliab. 40, 231–244 (2000)

    Article  Google Scholar 

  12. M. Roellig, R. Dudek, S. Wiese, B. Boehme, B. Wunderle, K.-J. Wolter, et al., Fatigue analysis of miniaturized lead-free solder contacts based on a novel test concept. Microelectron. Reliab. 47, 187–195 (2007)

    Article  Google Scholar 

  13. S. Wiese, F. Feustel, E. Meusel, Characterisation of constitutive behaviour of SnAg, SnAgCu and SnPb solder in flip chip joints. Sensors Actuators A Phys. 99, 188–193 (2002)

    Article  Google Scholar 

  14. F.X. Che, W.H. Zhu, E.S.W. Poh, X.W. Zhang, X.R. Zhang, The study of mechanical properties of Sn–Ag–Cu lead-free solders with different Ag contents and Ni doping under different strain rates and temperatures. J. Alloys Compd. 507, 215–224 (2010)

    Article  Google Scholar 

  15. J.-H. Zhao, V. Gupta, A. Lohia, D. Edwards, Reliability modeling of lead-free solder joints in wafer-level Chip scale packages. J. Electron. Packag. 132, 011005–011006 (2010)

    Article  Google Scholar 

  16. F. X. Che, J. H. L. Pang, B. S. Xiong, X. Luhua, T. H. Low, Lead free solder joint reliability characterization for PBGA, PQFP and TSSOP assemblies, in Components and Technology Conference, 2005. Proceedings. 55th, (2005), pp. 916–921 Vol. 1

    Google Scholar 

  17. K. Do-Seop, Y. Qiang, T. Shibutani, N. Sadakata, T. Inoue, Effect of void formation on thermal fatigue reliability of lead-free solder joints, in Thermal and thermomechanical phenomena in electronic systems, 2004. ITHERM '04. The ninth intersociety conference on, (2004), pp. 325–329 Vol. 2

    Google Scholar 

  18. A. Syed, Accumulated creep strain and energy density based thermal fatigue life prediction models for SnAgCu solder joints, in Components and Technology Conference, 2004. Proceedings. 54th, (2004), pp. 737–746 Vol. 1

    Google Scholar 

  19. R. Dudek, H. Walter, R. Doering, B. Michel, T. Meyer, J. Zapf, et al., Thermomechanical design for reliability of WLPs with compliant interconnects, in Electronic Packaging technology conference, 2005. EPTC 2005. Proceedings of 7th, (2005), p. 7 pp

    Google Scholar 

  20. F. Xuejun, P. Min, P. K. Bhatti, Effect of finite element modeling techniques on solder joint fatigue life prediction of flip-chip BGA packages, in Components and Technology Conference, 2006. Proceedings. 56th, (2006), p. 9 pp

    Google Scholar 

  21. X. Li, Z. Wang, Thermo-fatigue life evaluation of SnAgCu solder joints in flip chip assemblies. J. Mater. Process. Technol. 183, 6–12., 3/5/ (2007)

    Article  Google Scholar 

  22. F. X. Che and J. H. L. Pang, Thermal fatigue reliability analysis for PBGA with Sn-3.8Ag-0.7Cu solder joints, in Electronics packaging technology conference, 2004. EPTC 2004. Proceedings of 6th, (2004), pp. 787–792

    Google Scholar 

  23. V. Vasudevan and F. Xuejun, An acceleration model for lead-free (SAC) solder joint reliability under thermal cycling, in Components and Technology Conference, 2008. ECTC 2008. 58th, (2008), pp. 139–145

    Google Scholar 

  24. S. Ridout, C. Bailey, Review of methods to predict solder joint reliability under thermo-mechanical cycling. Fatigue Fract. Eng. Mater. Struct. 30, 400–412 (2007)

    Article  Google Scholar 

  25. R. Dudek, Characterization and modelling of solder joint reliability, Mechanics of Microelectronics. 141, G. Q. Zhang, W. D. Driel, X. J. Fan: Springer Netherlands, 2006, 377–468.

    Chapter  Google Scholar 

  26. R. Dudek, W. Faust, A. Gollhard, B. Michel, A FE-study of solder fatigue compared to microstructural damage evaluation by in-SITU laser scanning and FIB microscopy, in Thermal and Thermomechanical Phenomena in Electronics Systems, 2006. ITHERM ‘06. The tenth intersociety conference on, (2006), pp. 1031–1037

    Google Scholar 

  27. R. Darveaux, K. Banerji, Constitutive relations for tin-based solder joints. Components Hybrids. Manuf. Technol. IEEE. Trans. 15, 1013–1024 (1992)

    Article  Google Scholar 

  28. B. Vandevelde, M. Gonzalez, P. Limaye, P. Ratchev, E. Beyne, Thermal cycling reliability of SnAgCu and SnPb solder joints: a comparison for several IC-packages. Microelectron. Reliab. 47, 259–265 (2007)

    Article  Google Scholar 

  29. P. Vianco, J. Rejent, A. Kilgo, Time-independent mechanical and physical properties of the ternary 95.5Sn-3.9Ag-0.6Cu solder. J. Electron. Mater. 32, 142–151 (2003)

    Article  Google Scholar 

  30. J.H.L. Pang, B.S. Xiong, C.C. Neo, X.R. Mang, T.H. Low, Bulk solder and solder joint properties for lead free 95.5Sn-3.8Ag-0.7Cu solder alloy, in Electronic Components and Technology Conference, 2003. Proceedings. 53rd, (2003), pp. 673–679

    Google Scholar 

  31. J.-W. Kim, D.-G. Kim, S.-B. Jung, Evaluation of displacement rate effect in shear test of Sn–3Ag–0.5Cu solder bump for flip chip application. Microelectron. Reliab. 46, 535–542 (2006)

    Article  Google Scholar 

  32. M. Amagai, M. Watanabe, M. Omiya, K. Kishimoto, T. Shibuya, Mechanical characterization of Sn–Ag-based lead-free solders. Microelectron. Reliab. 42, 951–966 (2002)

    Article  Google Scholar 

  33. R. Dudek, W. Faust, S. Wiese, M. Rollig, B. Michel, Low-cycle fatigue of Ag-based solders dependent on alloying composition and thermal cycle conditions, in Electronics Packaging Technology Conference, 2007. EPTC 2007. 9th, (2007), pp. 14–20

    Google Scholar 

  34. T. Hannach, H. Worrack, W. Müller, T. Hauck, Creep in microelectronic solder joints: finite element simulations versus semi-analytical methods. Arch. Appl. Mech. 79, 605–617 (2009)

    Article  MATH  Google Scholar 

  35. A. Dasgupta, C. Oyan, D. Barker, M. Pecht, Solder creep-fatigue analysis by an energy-partitioning approach. J. Electron. Packag. 114, 152–160 (1992)

    Article  Google Scholar 

  36. W. D. van Driel, X. J. Fan, (Eds.), Solid state lighting reliability: components to systems (Vol. 1). Springer Science & Business Media,  Berlin, Germany,(2012)

    Google Scholar 

  37. R. Rawlings, J. Wu, A. Boccaccini, Glass-ceramics: their production from wastes – a review. J. Mater. Sci. 41, 733–761 (2006)

    Article  Google Scholar 

  38. F. Xuejun, P. Min, P. K. Bhatti, Effect of finite element modeling techniques on solder joint fatigue life prediction of flip-chip BGA packages, in Electronic Components and Technology Conference, 2006. Proceedings. 56th, (2006), pp. 972–980

    Google Scholar 

  39. M.G. Pecht, M.-H. Chang, Failure mechanisms and reliability issues in LEDs, in Solid State Lighting Reliability, ed. By W. D. van Driel, X. J. Fan, vol. 1, (Springer, New York, 2013), pp. 43–110

    Google Scholar 

  40. T.Y. Tee, H.S. Ng, D. Yap, X. Baraton, Z. Zhong, Board level solder joint reliability modeling and testing of TFBGA packages for telecommunication applications. Microelectron. Reliab. 43, 1117–1123., 7// (2003)

    Article  Google Scholar 

  41. T. Burnette, Z. Johnson, T. Koschmieder, W. Oyler, Underfilled BGAs for ceramic BGA packages and board-level reliability, in Electronic Components & Technology Conference, 2000. 2000 Proceedings. 50th, (2000), pp. 1221–1226

    Google Scholar 

  42. A. Syed, Reliability of lead-free solder connections for area-array packages, in IPC SMEMA Council APEX, (2001)

    Google Scholar 

  43. T. Y. Tee, H. S. Ng, Z. Zhong, J. Zhou, Board-level solder joint reliability analysis of thermally enhanced BGAs and LGAs. Adv. Packag. IEEE Transact. 29, 284–290 (2006)

    Google Scholar 

  44. M. Islam, A. Sharif, Y. Chan, Effect of volume in interfacial reaction between eutectic Sn-3.5% Ag-0.5% Cu solder and Cu metallization in microelectronic packaging. J. Electron. Mater. 34, 143–149 (2005)

    Article  Google Scholar 

  45. S.C. Chaparala, B.D. Rogemann, J.M. Pitarresi, B.G. Sammakia, J. Jackson, G. Griffin, et al., Effects of geometry and temperature cycle on the reliability of WLCSP solder joints, in Thermal and Thermomechanical Phenomena in Electronic Systems, 2004. ITHERM ‘04. The Ninth Intersociety Conference on, (2004), pp. 287–295 Vol. 2

    Google Scholar 

  46. S.P.V. Nadimpalli, J.K. Spelt, Effect of geometry on the fracture behavior of lead-free solder joints. Eng. Fract. Mech. 78, 1169–1181 (2011)

    Article  Google Scholar 

  47. J. Yang, L. Zhang, I.C. Ume, C. Ghiu, G. White, Board-level solder joint reliability study of land grid array packages for RF application using a laser ultrasound inspection system. J. Electron. Packag. 132, 021006 (2010)

    Article  Google Scholar 

  48. O. Nousiainen, O. Salmela, J. Putaala, T. Kangasvieri, Enhanced thermal fatigue endurance and lifetime prediction of lead-free LGA joints in LTCC modules. Soldering Surf. Mt. Technol. 23, 104–114 (2011)

    Article  Google Scholar 

  49. H. Zhen Xue, L. Xu, W. Ren, W. Bo Ping, T. Reinikamen, Reliability-based design optimization for land grid array solder joints under thermo-mechanical load, in Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, 2004. EuroSimE 2004. Proceedings of the 5th International Conference on, (2004), pp. 219–224

    Google Scholar 

  50. J.A. Carey, W.D. Collins, B.P. Loh, G.D. Sasser, Surface mountable LED package, ed: Google Patents, (2001)

    Google Scholar 

  51. J. Fan, Y. Kam-Chuen, M. Pecht, Lifetime estimation of high-power white led using degradation-data-driven method. Device Mater. Reliab. IEEE Trans. 12, 470–477 (2012)

    Article  Google Scholar 

  52. B.P. Loh, P.S. Andrews, N.W. Medendorp, Light emitting device packages, light emitting diode (LED) packages and related methods, ed: Google Patents, (2011)

    Google Scholar 

  53. K. Zeng, K.N. Tu, Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Mater. Sci. Eng. R. Rep. 38, 55–105., 6/14/ (2002)

    Article  Google Scholar 

  54. J. Lau, R. Lee D. Shangguan, Thermal Fatigue-Life Prediction of Lead-Free Solder Joints. (n.d.)

    Google Scholar 

  55. A. Kujala, T. Reinikainen, W. Ren, Transition to Pb-free manufacturing using land grid array packaging technology, in Electronic Components and Technology Conference, 2002. Proceedings. 52nd, (2002), pp. 359–364

    Google Scholar 

  56. J.H. Lau, S.W.R. Lee, Effects of build-up printed circuit board thickness on the solder joint reliability of a wafer level chip scale package (WLCSP). Components Packag. Technol. IEEE Trans. 25, 3–14 (2002)

    Article  Google Scholar 

  57. T. Tong Yan, N. Hun Shen, J.L. Diot, G. Frezza, R. Tiziani, G. Santospirito, Comprehensive design analysis of QFN and PowerQFN packages for enhanced board level solder joint reliability, in Electronic Components and Technology Conference, 2002. Proceedings. 52nd, (2002), pp. 985–991

    Google Scholar 

  58. W.D. Zhuang, P.C. Chang, F.Y. Chou, R.K. Shiue, Effect of solder creep on the reliability of large area die attachment. Microelectron. Reliab. 41, 2011–2021., 12// (2001)

    Article  Google Scholar 

  59. X. Liu, Processing and Reliability Assessment of Solder Joint Interconnection for Power Chips, (Virginia Polytechnic Institute and State University, 2001)

    Google Scholar 

  60. J.H.L. Pang, D.Y.R. Chong, T.H. Low, Thermal cycling analysis of flip-chip solder joint reliability. Components Packag. Technol. IEEE Trans. 24, 705–712 (2001)

    Article  Google Scholar 

  61. J.H.L. Pang, B.S. Xiong, T.H. Low, Creep and fatigue characterization of lead free 95.5Sn-3.8Ag-0.7Cu solder, in Electronic Components and Technology Conference, 2004. Proceedings. 54th, (2004), pp. 1333–1337 Vol. 2

    Google Scholar 

  62. A. Perkins and S.K. Sitaraman, Vibration-induced solder joint failure of a Ceramic Column Grid Array (CCGA) package, in Electronic Components and Technology Conference, 2004. Proceedings. 54th, (2004), pp. 1271–1278 Vol. 2

    Google Scholar 

  63. K. Tunga, K. Kacker, R. V. Pucha, S. K. Sitaraman, Accelerated thermal cycling: is it different for lead-free solder?, in Electronic Components and Technology Conference, 2004. Proceedings. 54th, (2004), pp. 1579–1585 Vol. 2

    Google Scholar 

  64. R. Pucha, J. Pyland, S.K. Sitaraman, Damage metric-based mapping approaches for developing accelerated thermal cycling guidelines for electronic packages. Int. J. Damage Mech. 10, 214–234 (2001.) 2001

    Article  Google Scholar 

  65. D. Herkommer, M. Reid, J. Punch, In-situ optical creep observation and constitutive modelling of joint-scale SAC solder shear samples, in Electronics Packaging Technology Conference, 2008. EPTC 2008. 10th, (2008), pp. 506–515

    Google Scholar 

  66. S. Liu, Y. Liu, Modeling and Simulation for Microelectronic Packaging Assembly: Manufacturing, Reliability and Testing. John Wiley & Sons, Hoboken, New Jersey, USA, (2011).

    Google Scholar 

  67. S.W. Lee, J.H. Lau, Effect of Chip dimension and substrate thickness on the solder joint reliability of plastic ball grid assrray packages. Circ. World 23, 16–19 (1997)

    Google Scholar 

  68. H. Solomon, The influence of the cycle frequency and wave shape on the fatigue life of leaded Chip carrier printed wiring board interconnections. J. Electron. Packag. 115, 173–179 (1993)

    Article  Google Scholar 

  69. M. Meilunas, A. Primavera, S. O. Dunford, Reliability and failure analysis of lead-free solder joints, in Proceedings of the IPC Annual Meeting, (2002)

    Google Scholar 

  70. IPC guidelines for accelerated reliability testing of surface mount solder attachments, in IPC-SM-785, ed. Northbrook: The institute for interconnecting and packaging electronic circuits, (1992)

    Google Scholar 

  71. Board level drop test method of components for handheld electronic products, in JESD22-B111, ed: JEDEC Solid state technology association, (2003)

    Google Scholar 

  72. N. Duan, T. Bach, J. Shen, R. Rongen, Comparison of in-situ measurement techniques of solder joint reliability under thermo-mechanical stresses. Microelectron. Reliab. 54, 1753 (2012)

    Article  Google Scholar 

  73. J. Lau, S. Erasmus, S. Pan, Effects of voids on bump chip carrier (BCC++) solder joint reliability, in Electronic Components and Technology Conference, 2002. Proceedings. 52nd, (2002), pp. 992–1000

    Google Scholar 

  74. Z. Qian, A. Dasgupta, P. Haswell, Viscoplastic constitutive properties and energy-partitioning model of lead-free Sn3.9Ag0.6Cu solder alloy, in Electronic Components and Technology Conference, 2003. Proceedings. 53rd, (2003), pp. 1862–1868

    Google Scholar 

  75. Q. Zhang, Isothermal Mechanical and Thermo-Mechanical Durability Characterization of Selected Pb-free Solders., ed (University of Maryland, College Park, 2004)

    Google Scholar 

  76. Q. Haiyu, N.M. Vichare, M.H. Azarian, M. Pecht, Analysis of solder joint failure criteria and measurement techniques in the qualification of electronic products. Components Packag. Technol. IEEE Trans. 31, 469–477 (2008)

    Article  Google Scholar 

  77. H. Xu, T.-K. Lee, C.-U. Kim, Fatigue properties of lead-free solder joints in electronic packaging assembly investigated by isothermal cyclic shear fatigue, in Electronic Components and Technology Conference (ECTC), 2014 I.E. 64th, (2014), pp. 133–138

    Google Scholar 

  78. X. Liu, G.-Q. Lu, Effects of solder joint shape and height on thermal fatigue lifetime. Components Packag. Technol. IEEE Trans. 26, 455–465 (2003)

    Article  Google Scholar 

  79. X. Liu, S. Xu, G.-Q. Lu, D.A. Dillard, Effect of substrate flexibility on solder joint reliability. Microelectron. Reliab. 42, 1883–1891., 12// (2002)

    Article  Google Scholar 

  80. N.M. Vichare, M.G. Pecht, Prognostics and health management of electronics. Components Packag. Technol. IEEE Trans. 29, 222–229 (2006)

    Article  Google Scholar 

  81. M. Pecht, Prognostics and Health Management of Electronics in Encyclopedia of Structural Health Monitoring, John Wiley & Sons, Hoboken, New Jersey, USA. (2009)

    Google Scholar 

  82. J. Johansson, I. Belov, E. Johnson, P. Leisner, A computational method for evaluating the damage in a solder joint of an electronic package subjected to thermal loads. Eng. Comput. 31, 467–489 (2014)

    Article  Google Scholar 

  83. H. Tsuritani, T. Sayama, K. Uesugi, T. Takayanagi, T. Mori, Nondestructive evaluation of thermal phase growth in solder Ball Microjoints by synchrotron radiation X-ray Microtomography. J. Electron. Packag. 129, 434–439 (2007)

    Article  Google Scholar 

  84. B.A. Cook, I.E. Anderson, J.L. Harringa, S.K. Kang, Isothermal aging of near-eutectic Sn-Ag-Cu solder alloys and its effect on electrical resistivity. J. Electron. Mater. 32, 1384–1391., 2003/12/01 (2003)

    Article  Google Scholar 

  85. W.M. Haynes, CRC Handbook of Chemistry and Physics, 95th edn. (Taylor & Francis, Boca Raton, 2014)

    Google Scholar 

  86. A. von Glasow, A. H. Fischer, G. Steinlesberger, Using the temperature coefficient of the resistance (TCR) as early reliability indicator for stressvoiding risks in Cu interconnects, in Reliability Physics Symposium Proceedings, 2003. 41st Annual. 2003 I.E. International, (2003), pp. 126–131

    Google Scholar 

  87. N. Angelidis, Damage Sensing in CFRP Composites Using Electrical Potential Techniques, PhD thesis of Cranfield University, Cranfield, UK (2004)

    Google Scholar 

  88. H. T. Chen, T. Mattila, J. Li, X. W. Liu, M. Y. Li, J. K. Kivilahti, Localized recrystallization and cracking behavior of lead-free solder interconnections under thermal cycling, in Electronic Packaging Technology & High Density Packaging, 2009. ICEPT-HDP ‘09. International Conference on, (2009), pp. 562–568

    Google Scholar 

  89. J.J. Sundelin, S.T. Nurmi, T.K. Lepistö, Recrystallization behaviour of SnAgCu solder joints. Mater. Sci. Eng. A 474, 201–207., 2/15/ (2008)

    Article  Google Scholar 

  90. A.U. Telang, T.R. Bieler, A. Zamiri, F. Pourboghrat, Incremental recrystallization/grain growth driven by elastic strain energy release in a thermomechanically fatigued lead-free solder joint. Acta Mater. 55, 2265–2277., 4// (2007)

    Article  Google Scholar 

  91. S.K. Kang, W.K. Choi, M.J. Yim, D.Y. Shih, Studies of the mechanical and electrical properties of lead-free solder joints. J. Electron. Mater. 31, 1292–1303., 2002/11/01 (2002)

    Article  Google Scholar 

  92. F. Guo, J.G. Lee, T. Hogan, K.N. Subramanian, Electrical conductivity changes in bulk Sn, and eutectic Sn-Ag in bulk and in joints, from aging and thermal shock. J. Mater. Res. 20, 364–374 (2005)

    Article  Google Scholar 

  93. A.R. Syed, Creep crack growth prediction of solder joints during temperature cycling – an engineering approach. J. Electron. Packag. 117, 116–122 (1995)

    Article  Google Scholar 

  94. M. Lavielle, Detection of multiple changes in a sequence of dependent variables. Stoch. Process. Appl. 83, 79–102., 9/1/ (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Zhang, J., Zhang, G.Q. (2018). Advances in LED Solder Joint Reliability Testing and Prediction. In: van Driel, W., Fan, X., Zhang, G. (eds) Solid State Lighting Reliability Part 2. Solid State Lighting Technology and Application Series, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-58175-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58175-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58174-3

  • Online ISBN: 978-3-319-58175-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics