Skip to main content

Nanobiohybrid for Water Treatment

  • Chapter
  • First Online:
  • 500 Accesses

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Nanobiohybrid has recently been grown out of other water purification technologies. The present study reported for the first time to demonstrate the uses of Nanobiohybrid for the effective degradation of 3,4-DHBA in water. Compared with free 3,4-POD, Nanobiohybrid showed greater stabilities in higher alkaline pH and temperature zones. The free 3,4-POD lost its residual activity of 82%, while Nanobiohybrid was 66% after 180 min incubations at 90 ℃. Moreover, Nanobiohybrid could retain 93% and about 50% of its relative activity and overall catalytic efficiency to the free 3,4-POD, respectively. Higher storage stability of the Nanobiohybrid was observed, since it maintained >55% of residual activity compared with free 3,4-POD which was almost 40% after 30 days of storage at both 4 and 25 ℃. Recrudescent Nanobiohybrid could keep >60% of residual activity after ten operational cycles used, endowing to decrease the production costs of 3,4-POD for long term uses. More than 70% of 3,4-DHBA removed by the Nanobiohybrid in less than 4 h treatment, suggesting a reduced time protocol. Therefore, with these overall results analyses we can conclude that the developed Nanobiohybrid here could act as an efficient novel decontamination platform for mineralizing 3,4-DHBA in water.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References and Future Readings

  1. Babich, H., Sedletcaia, A., Kenigsberg, B.: In vitro cytotoxicity of protocatechuic acid to cultured human cells from oral tissue: involvement in oxidative stress. Pharmacol. Toxicol. 91(5), 245–253 (2002)

    Article  Google Scholar 

  2. Benitez, F.J., Beltran-Heredia, J., Acero, J.L., Gonzalez, T.: Degradation of protocatechuic acid by two advanced oxidation processes: Ozone/UV radiation and H2O2UV radiation. Water Res. 30(7), 1597–1604 (1996)

    Article  Google Scholar 

  3. Buchan, A., Collier, L.S., Neidle, E.L., Moran, M.A.: Key aromatic-ring-cleaving enzyme, protocatechuate 3, 4-dioxygenase, in the ecologically important marineRoseobacter lineage. Appl. Environ. Microbiol. 66(11), 4662–4672 (2000)

    Article  Google Scholar 

  4. Cang-Rong, J.T., Pastorin, G.: The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies. Nanotechnology 20(25), 255102 (2009)

    Article  Google Scholar 

  5. Cloete, T.E.: Nanotechnology in Water Treatment Applications. Horizon Scientific Press (2010)

    Google Scholar 

  6. Dai, Y., Yin, L., Niu, J.: Laccase-carrying electrospun fibrous membranes for adsorption and degradation of PAHs in shoal soils. Environ. Sci. Technol. 45(24), 10611–10618 (2011)

    Article  Google Scholar 

  7. Das, R., Abd Hamid, S.B., Ali, M.E., Ismail, A.F., Annuar, M.S.M., Ramakrishna, S.: Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination 354, 160–179 (2014). doi:10.1016/j.desal.2014.09.032

    Article  Google Scholar 

  8. Das, R., Hamid, S.B.A., Ali, M.E., Ismail, A.F., Annuar, M., Ramakrishna, S.: Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination 354, 160–179 (2014)

    Article  Google Scholar 

  9. Gernjak, W., Krutzler, T., Glaser, A., Malato, S., Caceres, J., Bauer, R., Fernández-Alba, A.: Photo-Fenton treatment of water containing natural phenolic pollutants. Chemosphere 50(1), 71–78 (2003)

    Article  Google Scholar 

  10. Goh, W.J., Makam, V.S., Hu, J., Kang, L., Zheng, M., Yoong, S.L., Udalagama, C.N., Pastorin, G.: Iron oxide filled magnetic carbon nanotube-enzyme conjugates for recycling of amyloglucosidase: toward useful applications in biofuel production process. Langmuir 28(49), 16864–16873 (2012)

    Article  Google Scholar 

  11. Guzik, U, Hupert-Kocurek, K, Krysiak, M, Wojcieszyńska, D.: Degradation potential of protocatechuate 3, 4-dioxygenase from crude extract of stenotrophomonas maltophilia strain kb2 immobilized in calcium alginate hydrogels and on glyoxyl agarose. BioMed Res. Int. (2014)

    Google Scholar 

  12. Iyer, P.V., Ananthanarayan, L.: Enzyme stability and stabilization—aqueous and non-aqueous environment. Process Biochem. 43(10), 1019–1032 (2008)

    Article  Google Scholar 

  13. Johnson, K.A., Goody, R.S.: The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry 50(39), 8264–8269 (2011). doi:10.1021/bi201284u

    Article  Google Scholar 

  14. Khin, M.M., Nair, A.S., Babu, V.J., Murugan, R., Ramakrishna, S.: A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5(8), 8075–8109 (2012)

    Article  Google Scholar 

  15. Lante, A., Crapisi, A., Krastanov, A., Spettoli, P.: Biodegradation of phenols by laccase immobilised in a membrane reactor. Process Biochem. 36(1), 51–58 (2000)

    Article  Google Scholar 

  16. Mechrez, G., Krepker, M.A., Harel, Y., Lellouche, J.-P., Segal, E.: Biocatalytic carbon nanotube paper: a ‘one-pot’route for fabrication of enzyme-immobilized membranes for organophosphate bioremediation. J. Mater. Chem. B 2(7), 915–922 (2014)

    Article  Google Scholar 

  17. Nakamura, Y., Torikai, K., Ohigashi, H.: Toxic dose of a simple phenolic antioxidant, protocatechuic acid, attenuates the glutathione level in ICR mouse liver and kidney. J. Agric. Food Chem. 49(11), 5674–5678 (2001)

    Article  Google Scholar 

  18. Nakamura, Y., Torikai, K., Ohto, Y., Murakami, A., Tanaka, T., Ohigashi, H.: A simple phenolic antioxidant protocatechuic acid enhances tumor promotion and oxidative stress in female ICR mouse skin: dose-and timing-dependent enhancement and involvement of bioactivation by tyrosinase. Carcinogenesis 21(10), 1899–1907 (2000)

    Article  Google Scholar 

  19. Neun, D.J., Penn, A., Snyder, C.A.: Evidence for strain-specific differences in benzene toxicity as a function of host target cell susceptibility. Arch. Toxicol. 66(1), 11–17 (1992)

    Article  Google Scholar 

  20. Ren, L., Zhong, W.: Oxidation reactions mediated by single-walled carbon nanotubes in aqueous solution. Environ. Sci. Technol. 44(18), 6954–6958 (2010). doi:10.1021/es101821m

    Article  Google Scholar 

  21. Rivas, F.J., Frades, J., Alonso, M.A., Montoya, C., Monteagudo, J.M.: Fenton’s oxidation of food processing wastewater components. kinetic modeling of protocatechuic acid degradation. J. Agric. Food Chem. 53(26), 10097–10104 (2005). doi:10.1021/jf0512712

    Article  Google Scholar 

  22. Sarma, J., Mahiuddin, S.: Specific ion effect on the point of zero charge of α-alumina and on the adsorption of 3,4-dihydroxybenzoic acid onto α-alumina surface. Colloids Surf., A 457, 419–424 (2014). doi:10.1016/j.colsurfa.2014.06.014

    Article  Google Scholar 

  23. Silva, ASd, Jacques, R.J.S., Andreazza, R., Bento, F.M., Camargo, FAdO: The effects of trace elements, cations, and environmental conditions on protocatechuate 3, 4-dioxygenase activity. Sci. Agricola 70(2), 68–73 (2013)

    Article  Google Scholar 

  24. Stanier, R., Ingraham, J.: Protocatechuic acid oxidase. J. Biol. Chem. 210(2), 799–808 (1954)

    Google Scholar 

  25. Subrizi, F., Crucianelli, M., Grossi, V., Passacantando, M., Pesci, L., Saladino, R.: Carbon nanotubes as activating tyrosinase supports for the selective synthesis of catechols. ACS Catal. 4(3), 810–822 (2014)

    Article  Google Scholar 

  26. Venosa, A., Suidan, M., King, D., Wrenn, B.: Use of hopane as a conservative biomarker for monitoring the bioremediation effectiveness of crude oil contaminating a sandy beach. J. Ind. Microbiol. Biotechnol. 18(2–3), 131–139 (1997)

    Article  Google Scholar 

  27. Wang, F., Guo, C., Liu, H.Z., Liu, C.Z.: Immobilization of Pycnoporus sanguineus laccase by metal affinity adsorption on magnetic chelator particles. J. Chem. Technol. Biotechnol. 83(1), 97–104 (2008)

    Article  Google Scholar 

  28. Wojtaś-Wasilewska, M., Luterek, J., Rogalski, J.: Immobilization of protocatechuate 3, 4-dioxygenase from Pleurotus ostreatus on activated porous glass beads. Phytochemistry 27(9), 2731–2733 (1988)

    Article  Google Scholar 

  29. Wojtaś-Wasilewska, M., Luterek, J., Leonowicz, A., Dawidowicz, A.: Dearomatization of lignin derivatives by fungal protocatechuate 3, 4-dioxygenase immobilized on porosity glass. Biotechnol. Bioeng. 32(4), 507–511 (1988)

    Article  Google Scholar 

  30. Xu, R., Chi, C., Li, F., Zhang, B.: Laccase-Polyacrylonitrile Nanofibrous Membrane: Highly Immobilized, Stable, Reusable, and Efficacious for 2, 4, 6-Trichlorophenol Removal. ACS Appl. Mater. Interfaces 5(23), 12554–12560 (2013)

    Article  Google Scholar 

  31. Xu, R., Zhou, Q., Li, F., Zhang, B.: Laccase immobilization on chitosan/poly (vinyl alcohol) composite nanofibrous membranes for 2, 4-dichlorophenol removal. Chem. Eng. J. 222, 321–329 (2013)

    Article  Google Scholar 

  32. Zaborsky, O.R., Ogletree, J.: Immobilization of protocatechuate 3, 4-dioxygenase with activated agarose. Biochim. Biophys. Acta (BBA)-Enzymol. 289(1), 68–76 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasel Das .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Das, R. (2017). Nanobiohybrid for Water Treatment. In: Nanohybrid Catalyst based on Carbon Nanotube. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-58151-4_6

Download citation

Publish with us

Policies and ethics