Skip to main content

Carbon Nanotube in Water Treatment

  • Chapter
  • First Online:

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

The availability of safe and clean water is decreasing day by day, which is expected to increase in upcoming decades. To address this problem, various water purification technologies have been adopted. Among the various concepts proposed, CNTs based water treatment technologies have found to be promising because of its large surface area, high aspect ratio, greater chemical reactivity, lower cost, and energy, less chemical mass and impact on the environment. Therefore, research development and commercial interests in CNT are growing worldwide to treat water contaminants, which have huge impacts on the entire living systems including terrestrial, aquatic, and aerial flora and fauna. Here we reviewed most of the effective CNT based water purification technologies such as adsorption, hybrid catalysis, desalination, disinfection, sensing and monitoring of three major classes such as organic, inorganic and biological water pollutants. Since the Nanobiohybrid field yet remains to be matured, special importance has been paid on its mediated water purification technology. We have forayed into the deeper thoughts and compiled promises, facts and challenges of the important water purification technologies. Since water purification is a complex process; hydrologists, membrane technologists, environmentalists and industrialists can design “ONE POT” combination where effective water purification technologies would instate to tackle both the conventional and newly emerging toxic pollutants effectively.

Thousands have lived without love, not one without water.

—Source: W.H. Auden: Collected Poems: Auden by W.H. Auden, 1991.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References and Future Readings

  1. ABC-Science: 10 facts about our amazing oceans. http://www.abc.net.au/science/articles/2014/06/04/4018335.htm (2014). Accessed 25 Sept 2014

  2. Agnihotri, S., Mota, J.P., Rostam-Abadi, M., Rood, M.J.: Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles. Carbon 44(12), 2376–2383 (2006)

    Article  Google Scholar 

  3. Ahn, C.H., Baek, Y., Lee, C., Kim, S.O., Kim, S., Lee, S., Kim, S.-H., Bae, S.S., Park, J., Yoon, J.: Carbon nanotube-based membranes: fabrication and application to desalination. J. Ind. Eng. Chem. 18(5), 1551–1559 (2012)

    Article  Google Scholar 

  4. Aitken, M.D.: Waste treatment applications of enzymes: opportunities and obstacles. Chem. Eng. J. 52(2), B49–B58 (1993)

    Article  Google Scholar 

  5. Ali, I.: New generation adsorbents for water treatment. Chem. Rev. 112(10), 5073–5091 (2012)

    Article  Google Scholar 

  6. Ali, M., Das, R., Maamor, A., Hamid, S.B.A.: Multifunctional Carbon Nanotubes (CNTs): a new dimension in environmental remediation. Adv. Mater. Res. 832, 328–332 (2014)

    Article  Google Scholar 

  7. Arias, L.R., Yang, L.: Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25(5), 3003–3012 (2009)

    Article  Google Scholar 

  8. Asuri, P., Bale, S.S., Karajanagi, S.S., Kane, R.S.: The protein–nanomaterial interface. Curr. Opin. Biotechnol. 17(6), 562–568 (2006)

    Article  Google Scholar 

  9. Asuri, P., Karajanagi, S.S., Sellitto, E., Kim, D.Y., Kane, R.S., Dordick, J.S.: Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnol. Bioeng. 95(5), 804–811 (2006)

    Article  Google Scholar 

  10. Babich, H., Sedletcaia, A., Kenigsberg, B.: In vitro cytotoxicity of protocatechuic acid to cultured human cells from oral tissue: involvement in oxidative stress. Pharmacol. Toxicol. 91(5), 245–253 (2002)

    Article  Google Scholar 

  11. Banks, C.E., Moore, R.R., Davies, T.J., Compton, R.G.: Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes. Chem. Commun. 16, 1804–1805 (2004)

    Article  Google Scholar 

  12. Banks, C.E., Crossley, A., Salter, C., Wilkins, S.J., Compton, R.G.: Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes. Angew. Chem. Int. Ed. 45(16), 2533–2537 (2006)

    Article  Google Scholar 

  13. Benitez, F.J., Beltran-Heredia, J., Acero, J.L., Gonzalez, T.: Degradation of protocatechuic acid by two advanced oxidation processes: ozone/UV radiation and H2O2UV radiation. Water Res. 30(7), 1597–1604 (1996)

    Article  Google Scholar 

  14. Borja, R., Banks, C., Maestro-Duran, R., Alba, J.: The effects of the most important phenolic constituents of olive mill wastewater on batch anaerobic methanogenesis. Environ. Technol. 17(2), 167–174 (1996)

    Article  Google Scholar 

  15. Brena, B., González-Pombo, P., Batista-Viera, F.: Immobilization of enzymes: a literature survey. In: Immobilization of Enzymes and Cells, pp. 15–31. Springer (2013)

    Google Scholar 

  16. Britto, P.J., Santhanam, K.S., Rubio, A., Alonso, J.A., Ajayan, P.M.: Improved charge transfer at carbon nanotube electrodes. Adv. Mater. 11(2), 154–157 (1999)

    Article  Google Scholar 

  17. Buchan, A., Collier, L.S., Neidle, E.L., Moran, M.A.: Key aromatic-ring-cleaving enzyme, protocatechuate 3,4-dioxygenase, in the ecologically important marineRoseobacter lineage. Appl. Environ. Microbiol. 66(11), 4662–4672 (2000)

    Article  Google Scholar 

  18. Camper, A.K., LeChevallier, M.W., Broadaway, S.C., McFETERS, G.A.: Growth and persistence of pathogens on granular activated carbon filters. Appl. Environ. Microbiol. 50(6), 1378–1382 (1985)

    Google Scholar 

  19. Chan, W.-F., H-y, Chen, Surapathi, A., Taylor, M.G., Shao, X., Marand, E., Johnson, J.K.: Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination. ACS Nano 7(6), 5308–5319 (2013)

    Article  Google Scholar 

  20. Corry, B.: Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Energy Environ. Sci. 4(3), 751–759 (2011)

    Article  Google Scholar 

  21. Das, R., Ali, M.E., Abd Hamid, S.B., Ramakrishna, S., Chowdhury, Z.Z.: Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336, 97–109 (2014). doi:10.1016/j.desal.2013.12.026

    Article  Google Scholar 

  22. Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., Galiotis, C.: Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6), 833–840 (2008)

    Article  Google Scholar 

  23. Di Paola, A., García-López, E., Marcì, G., Palmisano, L.: A survey of photocatalytic materials for environmental remediation. J. Hazard. Mater. 211, 3–29 (2012)

    Article  Google Scholar 

  24. Dumée, L.F., Sears, K., Schütz, J., Finn, N., Huynh, C., Hawkins, S., Duke, M., Gray, S.: Characterization and evaluation of carbon nanotube Bucky-Paper membranes for direct contact membrane distillation. J. Membr. Sci. 351(1), 36–43 (2010)

    Article  Google Scholar 

  25. Earth-Forum: Distribution of the world’s water. Houston Museum of Natural Science. http://earth.rice.edu/mtpe/hydro/hydrosphere/hot/freshwater/0water_chart.html (2014). Accessed 26 Sept 2014

  26. Eder, D.: Carbon nanotube—inorganic hybrids. Chem. Rev. 110(3), 1348–1385 (2010)

    Article  Google Scholar 

  27. Fang, H.-T., Liu, C.-G., Liu, C., Li, F., Liu, M., Cheng, H.-M.: Purification of single-wall carbon nanotubes by electrochemical oxidation. Chem. Mater. 16(26), 5744–5750 (2004)

    Article  Google Scholar 

  28. Feng, W., Ji, P.: Enzymes immobilized on carbon nanotubes. Biotechnol. Adv. 29(6), 889–895 (2011)

    Article  Google Scholar 

  29. Gadd, G.M., Griffiths, A.J.: Microorganisms and heavy metal toxicity. Microb. Ecol. 4(4), 303–317 (1977)

    Article  Google Scholar 

  30. Gao, Y., Kyratzis, I.: Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide—a critical assessment. Bioconjug. Chem. 19(10), 1945–1950 (2008)

    Article  Google Scholar 

  31. Garcia, J., Gomes, H., Serp, P., Kalck, P., Figueiredo, J., Faria, J.: Carbon nanotube supported ruthenium catalysts for the treatment of high strength wastewater with aniline using wet air oxidation. Carbon 44(12), 2384–2391 (2006)

    Article  Google Scholar 

  32. Geng, Q., Guo, Q., Cao, C., Wang, L.: Investigation into NanoTiO2/ACSPCR for decomposition of aqueous hydroquinone. Ind. Eng. Chem. Res. 47(8), 2561–2568 (2008)

    Article  Google Scholar 

  33. Gernjak, W., Krutzler, T., Glaser, A., Malato, S., Caceres, J., Bauer, R., Fernández-Alba, A.: Photo-Fenton treatment of water containing natural phenolic pollutants. Chemosphere 50(1), 71–78 (2003)

    Article  Google Scholar 

  34. Girelli, A.M., Mattei, E., Messina, A.: Phenols removal by immobilized tyrosinase reactor in on-line high performance liquid chromatography. Anal. Chim. Acta 580(2), 271–277 (2006)

    Article  Google Scholar 

  35. Gledhill, W.E.: Microbial toxicity and degradation test methodology: an industrial perspective. Tox. Assess. 2(1), 89–96 (1987)

    Google Scholar 

  36. Goh, P., Ismail, A., Ng, B.: Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalination 308, 2–14 (2013)

    Article  Google Scholar 

  37. Greń, I., Wojcieszyńska, D., Guzik, U., Perkosz, M., Hupert-Kocurek, K.: Enhanced biotransformation of mononitrophenols by Stenotrophomonas maltophilia KB2 in the presence of aromatic compounds of plant origin. World J. Microbiol. Biotechnol. 26(2), 289–295 (2010)

    Article  Google Scholar 

  38. Gui, X., Wei, J., Wang, K., Cao, A., Zhu, H., Jia, Y., Shu, Q., Wu, D.: Carbon nanotube sponges. Adv. Mater. 22(5), 617–621 (2010)

    Article  Google Scholar 

  39. Guo, L., Morris, D.G., Liu, X., Vaslet, C., Hurt, R.H., Kane, A.B.: Iron bioavailability and redox activity in diverse carbon nanotube samples. Chem. Mater. 19(14), 3472–3478 (2007)

    Article  Google Scholar 

  40. Guzik, U., Hupert-Kocurek, K., Wojcieszyńska, D.: Intradiol dioxygenases—the key enzymes in xenobiotics degradation (2013)

    Google Scholar 

  41. Hemraj-Benny, T., Bandosz, T.J., Wong, S.S.: Effect of ozonolysis on the pore structure, surface chemistry, and bundling of single-walled carbon nanotubes. J. Colloid Interface Sci. 317(2), 375–382 (2008)

    Article  Google Scholar 

  42. Hinds, B.J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V., Bachas, L.G.: Aligned multiwalled carbon nanotube membranes. Science 303(5654), 62–65 (2004)

    Article  Google Scholar 

  43. Hirose, Y., Tanaka, T., Kawamori, T., Olnishi, M., Makita, H., Mori, H., Satoh, K., Hara, A.: Chemoprevention of urinary bladder carcinogenesis by the natural phenolic compound protocatechuic acid in rats. Carcinogenesis 16(10), 2337–2342 (1995)

    Article  Google Scholar 

  44. Hossain, F., Perales-Perez, O.J., Hwang, S., Román, F.: Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci. Total Environ. 466, 1047–1059 (2014)

    Article  Google Scholar 

  45. Hou, P.-X., Liu, C., Cheng, H.-M.: Purification of carbon nanotubes. Carbon 46(15), 2003–2025 (2008)

    Article  Google Scholar 

  46. Hu, H., Yu, A., Kim, E., Zhao, B., Itkis, M.E., Bekyarova, E., Haddon, R.C.: Influence of the zeta potential on the dispersability and purification of single-walled carbon nanotubes. J. Phys. Chem. B 109(23), 11520–11524 (2005)

    Article  Google Scholar 

  47. Huang, W., Taylor, S., Fu, K., Lin, Y., Zhang, D., Hanks, T.W., Rao, A.M., Sun, Y.-P.: Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett. 2(4), 311–314 (2002)

    Article  Google Scholar 

  48. Hwang, E.T., Gu, M.B.: Enzyme stabilization by nano/microsized hybrid materials. Eng. Life Sci. 13(1), 49–61 (2013)

    Article  Google Scholar 

  49. IWMI: A Comprehensive Assessment of Water Management in Agriculture. In: Molden, D. (ed.) (2007)

    Google Scholar 

  50. Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y., Guo, X.: Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39(5), 1378–1383 (2005)

    Article  Google Scholar 

  51. Jiang, K., Schadler, L.S., Siegel, R.W., Zhang, X., Zhang, H., Terrones, M.: Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation. J. Mater. Chem. 14(1), 37–39 (2004)

    Article  Google Scholar 

  52. Kang, S., Pinault, M., Pfefferle, L.D., Elimelech, M.: Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17), 8670–8673 (2007)

    Article  Google Scholar 

  53. Kang, S., Herzberg, M., Rodrigues, D.F., Elimelech, M.: Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24(13), 6409–6413 (2008)

    Article  Google Scholar 

  54. Kang, S., Mauter, M.S., Elimelech, M.: Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ. Sci. Technol. 42(19), 7528–7534 (2008)

    Article  Google Scholar 

  55. Kang, S., Mauter, M.S., Elimelech, M.: Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ. Sci. Technol. 43(7), 2648–2653 (2009)

    Article  Google Scholar 

  56. Kar, S., Bindal, R., Tewari, P.: Carbon nanotube membranes for desalination and water purification: challenges and opportunities. Nano Today 7(5), 385–389 (2012)

    Article  Google Scholar 

  57. Kar, S., Subramanian, M., Pal, A., Ghosh, A., Bindal, R., Prabhakar, S., Nuwad, J., Pillai, C., Chattopadhyay, S., Tewari, P.: Preparation, characterisation and performance evaluation of anti-biofouling property of carbon nanotube-polysulfone nanocomposite membranes. In: CARBON MATERIALS 2012 (CCM12): Carbon Materials for Energy Harvesting, Environment, Nanoscience and Technology, vol. 1, pp. 181–185. AIP Publishing (2013)

    Google Scholar 

  58. Kaufmann, M., Melia-Teevan, K.: Turning the Tides of Crisis. http://blog.michellekaufmann.com/wp-content/uploads/2009/03/water_crisis.pdf (2009). Accessed July 2013

  59. Kharraz, J.E., El-Sadek, A., Ghaffour, N., Mino, E.: Water scarcity and drought in WANA countries. Procedia Eng. 33, 14–29 (2012)

    Article  Google Scholar 

  60. Khin, M.M., Nair, A.S., Babu, V.J., Murugan, R., Ramakrishna, S.: A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5(8), 8075–8109 (2012)

    Article  Google Scholar 

  61. Kim, K.-H., Ihm, S.-K.: Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. J. Hazard. Mater. 186(1), 16–34 (2011)

    Article  Google Scholar 

  62. Kim, J., Grate, J.W., Wang, P.: Nanostructures for enzyme stabilization. Chem. Eng. Sci. 61(3), 1017–1026 (2006)

    Article  Google Scholar 

  63. Klaine, S.J., Alvarez, P.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., Lead, J.R.: Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27(9), 1825–1851 (2008)

    Article  Google Scholar 

  64. Kočí, K., Obalová, L., Lacný, Z.: Photocatalytic reduction of CO2 over TiO2 based catalysts. Chem. Pap. 62(1), 1–9 (2008)

    Article  Google Scholar 

  65. Kočí, K., Matějů, K., Obalová, L., Krejčíková, S., Lacný, Z., Plachá, D., Čapek, L., Hospodková, A., Šolcová, O.: Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl. Catal. B 96(3), 239–244 (2010)

    Article  Google Scholar 

  66. Kolaczkowski, S., Beltran, F., McLurgh, D., Rivas, F.: Wet air oxidation of phenol: factors that may influence global kinetics. Process Saf. Environ. Prot. 75(4), 257–265 (1997)

    Article  Google Scholar 

  67. Lam, C.-W., James, J.T., McCluskey, R., Hunter, R.L.: Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77(1), 126–134 (2004)

    Article  Google Scholar 

  68. Lambert, J., Ajayan, P., Bernier, P., Planeix, J., Brotons, V., Coq, B., Castaing, J.: Improving conditions towards isolating single-shell carbon nanotubes. Chem. Phys. Lett. 226(3), 364–371 (1994)

    Article  Google Scholar 

  69. Lawrence, N.S., Deo, R.P., Wang, J.: Comparison of the electrochemical reactivity of electrodes modified with carbon nanotubes from different sources. Electroanalysis 17(1), 65–72 (2005)

    Article  Google Scholar 

  70. Li, J., Zhang, Y.: Cutting of multi walled carbon nanotubes. Appl. Surf. Sci. 252(8), 2944–2948 (2006)

    Article  Google Scholar 

  71. Li, P., Wang, X., Wang, H., Wu, Y.-N.: High performance liquid chromatographic determination of phenolic acids in fruits and vegetables. Biomed. Environ. Sci.: BES 6(4), 389–398 (1993)

    Google Scholar 

  72. Li, Q., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, M.V., Li, D., Alvarez, P.J.: Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 42(18), 4591–4602 (2008)

    Article  Google Scholar 

  73. Li, Y., Huang, X., Qu, Y.: A strategy for efficient immobilization of laccase and horseradish peroxidase on single-walled carbon nanotubes. J. Chem. Technol. Biotechnol. 88(12), 2227–2232 (2013)

    Article  Google Scholar 

  74. Ling, X., Wei, Y., Zou, L., Xu, S.: The effect of different order of purification treatments on the purity of multiwalled carbon nanotubes. Appl. Surf. Sci. 276, 159–166 (2013)

    Article  Google Scholar 

  75. Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P.J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Rodriguez-Macias, F., Shon, Y.S., Lee, T.R., Colbert, D.T., Smalley, R.E.: Fullerene pipes. Science 280(5367), 1253–1256 (1998)

    Article  Google Scholar 

  76. Liu, H., Ru, J., Qu, J., Dai, R., Wang, Z., Hu, C.: Removal of persistent organic pollutants from micro-polluted drinking water by triolein embedded absorbent. Bioresour. Technol. 100(12), 2995–3002 (2009)

    Article  Google Scholar 

  77. Liu, S., Wei, L., Hao, L., Fang, N., Chang, M.W., Xu, R., Yang, Y., Chen, Y.: Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3(12), 3891–3902 (2009)

    Article  Google Scholar 

  78. Liu, X., Wang, M., Zhang, S., Pan, B.: Application potential of carbon nanotubes in water treatment: a review. J. Environ. Sci. 25(7), 1263–1280 (2013)

    Article  Google Scholar 

  79. López, B.P., Merkoçi, A.: Improvement of the electrochemical detection of catechol by the use of a carbon nanotube based biosensor. Analyst 134(1), 60–64 (2009)

    Article  Google Scholar 

  80. Luo, J., Meyer, A.S., Mateiu, R.V., Pinelo, M.: Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol. New Biotechnol. 32(3), 319–327 (2015)

    Article  Google Scholar 

  81. Ma, P.-C., Kim, J.-K.: Carbon Nanotubes for Polymer Reinforcement. CRC Press (2011)

    Google Scholar 

  82. Majouga, A., Sokolsky-Papkov, M., Kuznetsov, A., Lebedev, D., Efremova, M., Beloglazkina, E., Rudakovskaya, P., Veselov, M., Zyk, N., Golovin, Y.: Enzyme-functionalized gold-coated magnetite nanoparticles as novel hybrid nanomaterials: synthesis, purification and control of enzyme function by low-frequency magnetic field. Colloids Surf., B 125, 104–109 (2015)

    Article  Google Scholar 

  83. Malawska, M., Ekonomiuk, A., Wiłkomirski, B.: Polycyclic aromatic hydrocarbons in peat cores from southern Poland: distribution in stratigraphic profiles as an indicator of PAH sources. Mires and Peat 1(05), 1–14 (2006)

    Google Scholar 

  84. Masella, R., Cantafora, A., Modesti, D., Cardilli, A., Gennaro, L., Bocca, A., Coni, E.: Antioxidant activity of 3,4-DHPEA-EA and protocatecuic acid: a comparative assessment with other olive oil biophenols. Redox Rep. 4(3), 113–121 (1999)

    Article  Google Scholar 

  85. Matsushima, K., Kaneda, H., Harada, K., Matsuura, H., Hirata, K.: Immobilization of enzymatic extracts of Portulaca oleracea cv. roots for oxidizing aqueous bisphenol A. Biotechnol. Lett. 37(5), 1037–1042 (2015)

    Article  Google Scholar 

  86. Mauter, M.S., Elimelech, M.: Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 42(16), 5843–5859 (2008)

    Article  Google Scholar 

  87. McCreery, R.L.: Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108(7), 2646–2687 (2008). doi:10.1021/Cr068076m

    Article  Google Scholar 

  88. Mestl, G., Maksimova, N.I., Keller, N., Roddatis, V.V., Schlögl, R.: Carbon nanofilaments in heterogeneous catalysis: an industrial application for new carbon materials? Angew. Chem. Int. Ed. 40(11), 2066–2068 (2001)

    Article  Google Scholar 

  89. Mubarak, N., Sahu, J., Abdullah, E., Jayakumar, N.: Removal of heavy metals from wastewater using carbon nanotubes. Sep. Purif. Rev. 43(4), 311–338 (2014)

    Article  Google Scholar 

  90. Mugdha, A., Usha, M.: Enzymatic treatment of wastewater containing dyestuffs using different delivery systems. Sci. Rev. Chem. Commun. 2(1), 31–40 (2012). ISSN 2277 2669

    Google Scholar 

  91. Mukhopadhyay, A., Dasgupta, A.K., Chakrabarti, K.: Enhanced functionality and stabilization of a cold active laccase using nanotechnology based activation-immobilization. Bioresour. Technol. 179, 573–584 (2015)

    Article  Google Scholar 

  92. Nakamura, H., Nishikawa, A., Furukawa, F., Kasahara, K., Miyauchi, M., Son, H.Y., Hirose, M.: Inhibitory effects of protocatechuic acid on the post-initiation phase of hamster pancreatic carcinogenesis induced by N-nitrosobis (2-oxopropyl)amine. Anticancer Res. 20(5B), 3423–3427 (2000)

    Google Scholar 

  93. Nakamura, Y., Torikai, K., Ohigashi, H.: Toxic dose of a simple phenolic antioxidant, protocatechuic acid, attenuates the glutathione level in ICR mouse liver and kidney. J. Agric. Food Chem. 49(11), 5674–5678 (2001)

    Article  Google Scholar 

  94. Narayan, R.J., Berry, C., Brigmon, R.: Structural and biological properties of carbon nanotube composite films. Mater. Sci. Eng., B 123(2), 123–129 (2005)

    Article  Google Scholar 

  95. Nepal, D., Geckeler, K.E.: pH-sensitive dispersion and debundling of single-walled carbon nanotubes: lysozyme as a tool. Small 2(3), 406–412 (2006)

    Article  Google Scholar 

  96. Ohnishi, M., Yoshimi, N., Kawamori, T., Ino, N., Hirose, Y., Tanaka, T., Yamahara, J., Miyata, H., Mori, H.: Inhibitory effects of dietary protocatechuic acid and costunolide on 7,12-dimethylbenz a anthracene-induced hamster cheek pouch carcinogenesis. Jpn. J. Cancer Res. 88(2), 111–119 (1997)

    Article  Google Scholar 

  97. Ören, A.H., Kaya, A.: Factors affecting adsorption characteristics of Zn2+ on two natural zeolites. J. Hazard. Mater. 131(1), 59–65 (2006)

    Article  Google Scholar 

  98. Osswald, S., Havel, M., Gogotsi, Y.: Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J. Raman Spectrosc. 38(6), 728–736 (2007)

    Article  Google Scholar 

  99. Paipetis, A., Kostopoulos, V.: Carbon Nanotube Enhanced Aerospace Composite Materials. Springer (2013)

    Google Scholar 

  100. Pang, R., Li, M., Zhang, C.: Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: diffusional limitation investigation. Talanta (2014)

    Google Scholar 

  101. Patel, Y., Gupte, A.: Biological treatment of textile dyes by agar-agar immobilized consortium in a packed bed reactor. Water Environ. Res. 87(3), 242–251 (2015)

    Article  Google Scholar 

  102. Peng, X., Sfeir, M.Y., Zhang, F., Misewich, J.A., Wong, S.S.: Covalent synthesis and optical characterization of double-walled carbon nanotube–nanocrystal heterostructures. J. Phys. Chem. C 114(19), 8766–8773 (2010)

    Article  Google Scholar 

  103. Pereira, M.G., Facchini, F.D.A., Filó, L.E.C., Polizeli, A.M., Vici, A.C., Jorge, J.A., Fernandez-Lorente, G., Pessela, B.C., Guisan, J.M., Polizeli, M.L.T.M.: Immobilized lipase from Hypocrea pseudokoningii on hydrophobic and ionic supports: determination of thermal and organic solvent stabilities for applications in the oleochemical industry. Process Biochem (2015)

    Google Scholar 

  104. Pulskamp, K., Diabaté, S., Krug, H.F.: Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett. 168(1), 58–74 (2007)

    Article  Google Scholar 

  105. Pumera, M.: Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets. Langmuir 23(11), 6453–6458 (2007)

    Article  Google Scholar 

  106. Qu, X.L., Alvarez, P.J.J., Li, Q.L.: Applications of nanotechnology in water and wastewater treatment. Water Res. 47(12), 3931–3946 (2013). doi:10.1016/j.watres.2012.09.058

    Article  Google Scholar 

  107. Rao, G.P., Lu, C., Su, F.: Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep. Purif. Technol. 58(1), 224–231 (2007)

    Article  Google Scholar 

  108. Ren, X., Chen, C., Nagatsu, M., Wang, X.: Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem. Eng. J. 170(2), 395–410 (2011)

    Article  Google Scholar 

  109. Riggs, J.E., Guo, Z., Carroll, D.L., Sun, Y.-P.: Strong luminescence of solubilized carbon nanotubes. J. Am. Chem. Soc. 122(24), 5879–5880 (2000)

    Article  Google Scholar 

  110. Ritter, L., Solomon, K., Forget, J., Stemeroff, M., O’leary, C.: A review of selected persistent organic pollutants. International Programme on Chemical Safety (IPCS) PCS/9539 Geneva: World Health Organization 65, 66 (1995)

    Google Scholar 

  111. Rivas, F., Kolaczkowski, S., Beltran, F., McLurgh, D.: Development of a model for the wet air oxidation of phenol based on a free radical mechanism. Chem. Eng. Sci. 53(14), 2575–2586 (1998)

    Article  Google Scholar 

  112. Rivas, F.J., Frades, J., Alonso, M.A., Montoya, C., Monteagudo, J.M.: Fenton’s oxidation of food processing wastewater components. Kinetic modeling of protocatechuic acid degradation. J. Agric. Food Chem. 53(26), 10097–10104 (2005). doi:10.1021/jf0512712

    Article  Google Scholar 

  113. Saleh, T.A.: The Role of Carbon Nanotubes in Enhancement of Photocatalysis (2013)

    Google Scholar 

  114. Saleh, T.A., Gupta, V.K.: Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J. Colloid Interface Sci. 362(2), 337–344 (2011)

    Article  Google Scholar 

  115. Sarma, J., Mahiuddin, S.: Specific ion effect on the point of zero charge of α-alumina and on the adsorption of 3,4-dihydroxybenzoic acid onto α-alumina surface. Colloids Surf., A 457, 419–424 (2014). doi:10.1016/j.colsurfa.2014.06.014

    Article  Google Scholar 

  116. Savage, N., Diallo, M.S.: Nanomaterials and water purification: opportunities and challenges. J. Nanopart. Res. 7(4–5), 331–342 (2005)

    Article  Google Scholar 

  117. Shelimov, K.B., Esenaliev, R.O., Rinzler, A.G., Huffman, C.B., Smalley, R.E.: Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem. Phys. Lett. 282(5), 429–434 (1998)

    Article  Google Scholar 

  118. Shieh, Y.-T., Liu, G.-L., Wu, H.-H., Lee, C.-C.: Effects of polarity and pH on the solubility of acid-treated carbon nanotubes in different media. Carbon 45(9), 1880–1890 (2007)

    Article  Google Scholar 

  119. Shimp, R.J., Pfaender, F.K.: Effects of surface area and flow rate on marine bacterial growth in activated carbon columns. Appl. Environ. Microbiol. 44(2), 471–477 (1982)

    Google Scholar 

  120. Smart, S., Cassady, A., Lu, G., Martin, D.: The biocompatibility of carbon nanotubes. Carbon 44(6), 1034–1047 (2006)

    Article  Google Scholar 

  121. Smith, B., Wepasnick, K., Schrote, K.E., Cho, H.-H., Ball, W.P., Fairbrother, D.H.: Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: a structure–property relationship. Langmuir 25(17), 9767–9776 (2009)

    Article  Google Scholar 

  122. Subramanian, V., Wolf, E.E., Kamat, P.V.: Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 126(15), 4943–4950 (2004)

    Article  Google Scholar 

  123. Subrizi, F., Crucianelli, M., Grossi, V., Passacantando, M., Pesci, L., Saladino, R.: Carbon nanotubes as activating tyrosinase supports for the selective synthesis of catechols. ACS Catal. 4(3), 810–822 (2014). doi:10.1021/cs400856e

    Article  Google Scholar 

  124. Suma, Y., Kim, D., Lee, J.W., Park, K.Y., Kim, H.S.: Degradation of catechol by immobilized hydroxyquinol 1,2-dioxygenase (1,2-HQD) onto single-walled carbon nanotubes. In: Proceedings of the International Conference on Chemical, Environmental Science and Engineering (ICEEBS’12) (2012)

    Google Scholar 

  125. Tanaka, T., Kojima, T., Kawamori, T., Yoshimi, N., Mori, H.: Chemoprevention of diethylnitrosamine-induced hepatocarcinogenesis by a simple phenolic acid protocatechuic acid in rats. Can. Res. 53(12), 2775–2779 (1993)

    Google Scholar 

  126. Tanaka, T., Kojima, T., Suzui, M., Mori, H.: Chemoprevention of colon carcinogenesis by the natural product of a simple phenolic compound protocatechuic acid: suppressing effects on tumor development and biomarkers expression of colon tumorigenesis. Can. Res. 53(17), 3908–3913 (1993)

    Google Scholar 

  127. Tanaka, T., Kojima, T., Kawamori, T., Mori, H.: Chemoprevention of digestive organs carcinogenesis by natural product protocatechuic acid. Cancer 75(S6), 1433–1439 (1995)

    Article  Google Scholar 

  128. Tseng, T.H., Wang, C.J., Kao, E.S., Chu, H.Y.: Hibiscus protocatechuic acid protects against oxidative damage induced by tert-butylhydroperoxide in rat primary hepatocytes. Chem. Biol. Interact. 101(2), 137–148 (1996). doi:10.1016/0009-2797(96)03721-0

    Article  Google Scholar 

  129. UN: Water scarcity. UN. http://www.un.org/waterforlifedecade/scarcity.shtml (2014). Accessed 4 Sept 2014

  130. UNDP: One Planet to Share: Sustaining Human Progress in a Changing Climate. Asia-Pacific Human Development Report, New Delhi (2012)

    Google Scholar 

  131. Upadhyayula, V.K.K., Deng, S.G., Mitchell, M.C., Smith, G.B.: Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci. Total Environ. 408(1), 1–13 (2009). doi:10.1016/j.scitotenv.2009.09.027

    Article  Google Scholar 

  132. U.S.-Census-Burea: International Data Base. http://web.archive.org/web/20060519101114/ http://www.geohive.com/global/geo.php?xml=hist3&xsl=hist3 (2014). Accessed 27 Sept 2014

  133. Wang, H., Zhou, A., Peng, F., Yu, H., Yang, J.: Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb (II). J. Colloid Interface Sci. 316(2), 277–283 (2007)

    Article  Google Scholar 

  134. Wepasnick, K.A., Smith, B.A., Schrote, K.E., Wilson, H.K., Diegelmann, S.R., Fairbrother, D.H.: Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 49(1), 24–36 (2011)

    Article  Google Scholar 

  135. WWAP: The United Nations World Water Development Report 3: Water in a Changing World. UNESCO/Earthscan, Paris/London (2009)

    Google Scholar 

  136. WWAP: The United Nations World Water Development Report 4: Managing Water Under Uncertainty and Risk. UNESCO, Paris (2012)

    Google Scholar 

  137. Xu, R., Chi, C., Li, F., Zhang, B.: Laccase-polyacrylonitrile nanofibrous membrane: highly immobilized, stable, reusable, and efficacious for 2,4,6-trichlorophenol removal. ACS Appl. Mater. Interfaces 5(23), 12554–12560 (2013)

    Article  Google Scholar 

  138. Yan, H., Yang, X., Chen, J., Yin, C., Xiao, C., Chen, H.: Synergistic removal of aniline by carbon nanotubes and the enzymes of Delftia sp. XYJ6. J. Environ. Sci. 23(7), 1165–1170 (2011)

    Article  Google Scholar 

  139. Yang, S., Zhu, W., Li, X., Wang, J., Zhou, Y.: Multi-walled carbon nanotubes (MWNTs) as an efficient catalyst for catalytic wet air oxidation of phenol. Catal. Commun. 8(12), 2059–2063 (2007)

    Article  Google Scholar 

  140. Yang, J., Jiang, L.-C., Zhang, W.-D., Gunasekaran, S.: A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays. Talanta 82(1), 25–33 (2010)

    Article  Google Scholar 

  141. Yang, H.Y., Han, Z.J., Yu, S.F., Pey, K.L., Ostrikov, K., Karnik, R.: Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nat. Commun. 4 (2013)

    Google Scholar 

  142. Yen, G.-C., Hsieh, C.-L.: Reactive oxygen species scavenging activity of Du-zhong (Eucommia ulmoides Oliv.) and its active compounds. J. Agric. Food Chem. 48(8), 3431–3436 (2000)

    Article  Google Scholar 

  143. Yu, J.-G., Zhao, X.-H., Yang, H., Chen, X.-H., Yang, Q., Yu, L.-Y., Jiang, J.-H., Chen, X.-Q.: Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci. Total Environ. 482, 241–251 (2014)

    Article  Google Scholar 

  144. Yu, J.-G., Zhao, X.-H., Yu, L.-Y., Jiao, F.-P., Jiang, J.-H., Chen, X.-Q.: Removal, recovery and enrichment of metals from aqueous solutions using carbon nanotubes. J. Radioanal. Nucl. Chem. 299(3), 1155–1163 (2014)

    Article  Google Scholar 

  145. Zhang, L., Fang, M.: Nanomaterials in pollution trace detection and environmental improvement. Nano Today 5(2), 128–142 (2010)

    Article  Google Scholar 

  146. Zhang, M., Su, L., Mao, L.: Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid. Carbon 44(2), 276–283 (2006)

    Article  Google Scholar 

  147. Zhao, Z., Yang, Z., Hu, Y., Li, J., Fan, X.: Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Appl. Surf. Sci. 276, 476–481 (2013)

    Article  Google Scholar 

  148. Zhou, Q.-X., Wang, C.-Y., Fu, Z.-B., Tang, Y.-J., Zhang, H.: Effects of various defects on the electronic properties of single-walled carbon nanotubes: a first principle study. Front. Phys. 9(2), 200–209 (2014)

    Article  Google Scholar 

  149. Zhu, C., Luan, Z., Wang, Y., Shan, X.: Removal of cadmium from aqueous solutions by adsorption on granular red mud (GRM). Sep. Purif. Technol. 57(1), 161–169 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasel Das .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Das, R. (2017). Carbon Nanotube in Water Treatment. In: Nanohybrid Catalyst based on Carbon Nanotube. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-58151-4_2

Download citation

Publish with us

Policies and ethics