Skip to main content

Part of the book series: Carbon Nanostructures ((CARBON))

  • 503 Accesses

Abstract

The efficient handling of both the persisting and newly emerging pollutants is a must, since they are continuously defiling the limited fresh water resources, seriously affecting the terrestrial, aquatic, and aerial flora and fauna. The pressing need to overcome current major limitations of advanced oxidation processes (AOP), such as energy-intensive, toxic intermediates production, less selectivity and sensitivity for dilute solutions and catalyst leaching effects have motivated us to establish a different route for water purification called “NanoBiohybrid Catalyst” technology. Although enzymes have been used for a long time to treat wastewater, they are not stable, have low life span, highly sensitive to mechanical stresses and difficult to separate from the substrates. In order to overcome these drawbacks, this book shows how to use carbon nanotube (CNT) as an excellent support matrix for enzyme immobilization. Unfortunately, raw CNT are hydrophobic and often contaminated with various impurities, such as amorphous carbons, metals and ashes which hinder its conjugation with enzymes. Thence this book displays first how to use simple chemical methods for CNT purification and also functionalization with bioconjugating functionalities for water dispersion properties. The book then reveals the methods based on which one can immobilize enzymes onto the purified and functionalized CNT to birth a NanoBiohybrid Catalyst. Finally, the potentiality of the hybrid catalyst for organic pollutants removal from the water has been demonstrated.

Live as if you were to die tomorrow. Learn as if you were to live forever.

—Source: Mahatma Gandhi: Autobiography: The Story of My Experiments with Truth by Mohandas Karamchand Gandhi, 1983.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Future Readings

  1. Agnihotri, S., Mota, J.P., Rostam-Abadi, M., Rood, M.J.: Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles. Carbon 44(12), 2376–2383 (2006)

    Article  Google Scholar 

  2. Ali, M., Das, R., Maamor, A., Hamid, S.B.A.: Multifunctional Carbon Nanotubes (CNTs): a New Dimension in Environmental Remediation. Adv. Mater. Res. 832, 328–332 (2014)

    Article  Google Scholar 

  3. Aragay, G., Pons, J., Merkoçi, A.: Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 111(5), 3433–3458 (2011)

    Article  Google Scholar 

  4. Asuri, P., Bale, S.S., Karajanagi, S.S., Kane, R.S.: The protein–nanomaterial interface. Curr. Opin. Biotechnol. 17(6), 562–568 (2006)

    Article  Google Scholar 

  5. Asuri, P., Karajanagi, S.S., Sellitto, E., Kim, D.Y., Kane, R.S., Dordick, J.S.: Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnol. Bioeng. 95(5), 804–811 (2006)

    Article  Google Scholar 

  6. Babich, H., Sedletcaia, A., Kenigsberg, B.: In vitro cytotoxicity of protocatechuic acid to cultured human cells from oral tissue: involvement in oxidative stress. Pharmacol. Toxicol. 91(5), 245–253 (2002)

    Article  Google Scholar 

  7. Baker, R., Waite, R.: Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene. J. Catal. 37(1), 101–105 (1975)

    Article  Google Scholar 

  8. Baker, R., Barber, M., Harris, P., Feates, F., Waite, R.: Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 26(1), 51–62 (1972)

    Article  Google Scholar 

  9. Banks, C.E., Crossley, A., Salter, C., Wilkins, S.J., Compton, R.G.: carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes. Angew. Chem. Int. Ed. 45(16), 2533–2537 (2006)

    Article  Google Scholar 

  10. Belin, T., Epron, F.: Characterization methods of carbon nanotubes: a review. Mater. Sci. Eng. B 119(2), 105–118 (2005)

    Article  Google Scholar 

  11. Benitez, F.J., Beltran-Heredia, J., Acero, J.L., Gonzalez, T.: Degradation of protocatechuic acid by two advanced oxidation processes: ozone/UV radiation and H2O2UV radiation. Water Res. 30(7), 1597–1604 (1996)

    Article  Google Scholar 

  12. Brena, B., González-Pombo, P., Batista-Viera, F.: Immobilization of Enzymes: A Literature Survey. In: Immobilization of Enzymes and Cells, pp. 15–31. Springer, Berlin (2013)

    Google Scholar 

  13. Buchan, A., Collier, L.S., Neidle, E.L., Moran, M.A.: Key aromatic-ring-cleaving enzyme, protocatechuate 3,4-dioxygenase, in the ecologically important marineRoseobacter lineage. Appl. Environ. Microbiol. 66(11), 4662–4672 (2000)

    Article  Google Scholar 

  14. Canela, M., Jardim, W.: Identification and photocatalytic destruction of malodorous compounds in sewage. Environ. Technol. 29(6), 673–679 (2008)

    Article  Google Scholar 

  15. Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C., Haddon, R.C.: Solution properties of single-walled carbon nanotubes. Science 282(5386), 95–98 (1998)

    Article  Google Scholar 

  16. Coleridge, S.T.: The rime of the ancient mariner and other poems, vol. 80. Houghton, Mifflin (1895)

    Google Scholar 

  17. Dai, Y., Yin, L., Niu, J.: Laccase-carrying electrospun fibrous membranes for adsorption and degradation of PAHs in shoal soils. Environ. Sci. Technol. 45(24), 10611–10618 (2011)

    Article  Google Scholar 

  18. Das, R., Abd Hamid, S.B., Ali, M.E., Ismail, A.F., Annuar, M.S.M., Ramakrishna, S.: Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination 354, 160–179 (2014). doi:10.1016/j.desal.2014.09.032

    Article  Google Scholar 

  19. Das, R., Ali, M.E., Abd Hamid, S.B., Ramakrishna, S., Chowdhury, Z.Z.: Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336, 97–109 (2014). doi:10.1016/j.desal.2013.12.026

    Article  Google Scholar 

  20. Das, R., Ali, M.E., Bee Abd Hamid, S., Annuar, M.S.M., Ramakrishna, S.: Common wet chemical agents for purifying multiwalled carbon nanotubes. J. Nanomaterials 2014, 9 (2014). doi:10.1155/2014/945172

    Google Scholar 

  21. Dinu, C.Z., Zhu, G., Bale, S.S., Anand, G., Reeder, P.J., Sanford, K., Whited, G., Kane, R.S., Dordick, J.S.: Enzyme-based nanoscale composites for use as active decontamination surfaces. Adv. Funct. Mater. 20(3), 392–398 (2010)

    Article  Google Scholar 

  22. Einstein A (1920) Relativity: the special and general theory. Penguin, Harmondsworth

    Google Scholar 

  23. Fathizadeh, M., Aroujalian, A., Raisi, A.: Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. J. Membr. Sci. 375(1), 88–95 (2011)

    Article  Google Scholar 

  24. Filleter, T., Bernal, R., Li, S., Espinosa, H.D.: Ultrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles. Adv. Mater. 23(25), 2855–2860 (2011)

    Article  Google Scholar 

  25. Feng, W., Ji, P.: Enzymes immobilized on carbon nanotubes. Biotechnol. Adv. 29(6), 889–895 (2011)

    Article  Google Scholar 

  26. Fogden, S., Verdejo, R., Cottam, B., Shaffer, M.: Purification of single walled carbon nanotubes: the problem with oxidation debris. Chem. Phys. Lett. 460(1), 162–167 (2008)

    Article  Google Scholar 

  27. Fujisawa, H., Hayaishi, O.: Protocatechuate 3,4-dioxygenase I. Crystallization and characterization. J. Biol. Chem. 243(10), 2673–2681 (1968)

    Google Scholar 

  28. Gao, Y., Kyratzis, I.: Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide—a critical assessment. Bioconjug. Chem 19(10), 1945–1950 (2008)

    Article  Google Scholar 

  29. Gernjak, W., Krutzler, T., Glaser, A., Malato, S., Caceres, J., Bauer, R., Fernández-Alba, A.: Photo-Fenton treatment of water containing natural phenolic pollutants. Chemosphere 50(1), 71–78 (2003)

    Article  Google Scholar 

  30. Girelli, A.M., Mattei, E., Messina, A.: Phenols removal by immobilized tyrosinase reactor in on-line high performance liquid chromatography. Anal. Chim. Acta 580(2), 271–277 (2006)

    Article  Google Scholar 

  31. Goh, P., Ismail, A., Ng, B.: Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalination 308, 2–14 (2013)

    Article  Google Scholar 

  32. Guiseppi-Elie, A., Lei, C., Baughman, R.H.: Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 13(5), 559 (2002)

    Article  Google Scholar 

  33. Gupta, V.K., Ali, I., Saleh, T.A., Nayak, A., Agarwal, S.: Chemical treatment technologies for waste-water recycling—an overview. RSC Adv. 2(16), 6380–6388 (2012)

    Article  Google Scholar 

  34. Guzik, U., Hupert-Kocurek, K., Krysiak, M., Wojcieszyńska, D.: Degradation potential of protocatechuate 3,4-dioxygenase from crude extract of Stenotrophomonas maltophilia strain KB2 immobilized in calcium alginate hydrogels and on glyoxyl agarose. BioMed Research International 2014 (2014)

    Google Scholar 

  35. Hamdi, M.: Toxicity and biodegradability of olive mill wastewaters in batch anaerobic digestion. Appl. Biochem. Biotechnol. 37(2), 155–163 (1992)

    Article  Google Scholar 

  36. Hou, P.-X., Liu, C., Cheng, H.-M.: Purification of carbon nanotubes. Carbon 46(15), 2003–2025 (2008)

    Article  Google Scholar 

  37. Huang, W., Taylor, S., Fu, K., Lin, Y., Zhang, D., Hanks, T.W., Rao, A.M., Sun, Y.-P.: Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett. 2(4), 311–314 (2002)

    Article  Google Scholar 

  38. Hong, S., Myung, S.: Nanotube electronics: a flexible approach to mobility. Nat. Nanotechnol. 2(4), 207–208 (2007)

    Article  Google Scholar 

  39. Iijima, S.: Helical microtubules of graphitic carbon. nature 354(6348), 56–58 (1991)

    Google Scholar 

  40. Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 (1993). doi:10.1038/363603a0

    Article  Google Scholar 

  41. Jadav, G.L., Singh, P.S.: Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties. J. Membr. Sci. 328(1), 257–267 (2009)

    Article  Google Scholar 

  42. Jeong, B.-H., Hoek, E., Yan, Y., Subramani, A., Huang, X., Hurwitz, G., Ghosh, A.K., Jawor, A.: Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J. Membr. Sci. 294(1), 1–7 (2007)

    Article  Google Scholar 

  43. Jiang, K., Schadler, L.S., Siegel, R.W., Zhang, X., Zhang, H., Terrones, M.: Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation. J. Mater. Chem. 14(1), 37–39 (2004)

    Article  Google Scholar 

  44. Kamat, P.V., Meisel, D.: Nanoscience opportunities in environmental remediation. C. R. Chim. 6(8), 999–1007 (2003)

    Article  Google Scholar 

  45. Khin, M.M., Nair, A.S., Babu, V.J., Murugan, R., Ramakrishna, S.: A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5(8), 8075–8109 (2012)

    Article  Google Scholar 

  46. Kim, B.J., Kang, B.K., Bahk, Y.Y., Yoo, K.H., Lim, K.J.: Immobilization of horseradish peroxidase on multi-walled carbon nanotubes and its enzymatic stability. Curr. Appl. Phys. 9(4), e263–e265 (2009)

    Article  Google Scholar 

  47. Kobayashi, Y., Nakashima, H., Takagi, D., Homma, Y.: CVD growth of single-walled carbon nanotubes using size-controlled nanoparticle catalyst. Thin Solid Films 464, 286–289 (2004)

    Article  Google Scholar 

  48. Kolaczkowski, S., Beltran, F., McLurgh, D., Rivas, F.: Wet air oxidation of phenol: factors that may influence global kinetics. Process Saf. Environ. Prot. 75(4), 257–265 (1997)

    Article  Google Scholar 

  49. Latha, R., Mandappa, I., Thakur, M., Manonmani, H.: Influence of metal ions on dehydrohalogenase activity. Afr. J. Basic Appl. Sci. 3(2), 45–51 (2011)

    Google Scholar 

  50. Lee, Y.-M., Kwon, O.-Y., Yoon, Y.-J., Ryu, K.: Immobilization of horseradish peroxidase on multi-wall carbon nanotubes and its electrochemical properties. Biotechnol. Lett. 28(1), 39–43 (2006)

    Article  Google Scholar 

  51. Lehman, J.H., Terrones, M., Mansfield, E., Hurst, K.E., Meunier, V.: Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49(8), 2581–2602 (2011)

    Article  Google Scholar 

  52. Liu, Y., Qu, X., Guo, H., Chen, H., Liu, B., Dong, S.: Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes–chitosan composite. Biosens. Bioelectron. 21(12), 2195–2201 (2006)

    Article  Google Scholar 

  53. Nakamura, Y., Torikai, K., Ohigashi, H.: Toxic dose of a simple phenolic antioxidant, protocatechuic acid, attenuates the glutathione level in ICR mouse liver and kidney. J. Agric. Food Chem. 49(11), 5674–5678 (2001)

    Article  Google Scholar 

  54. Nakamura, Y., Torikai, K., Ohto, Y., Murakami, A., Tanaka, T., Ohigashi, H.: A simple phenolic antioxidant protocatechuic acid enhances tumor promotion and oxidative stress in female ICR mouse skin: dose-and timing-dependent enhancement and involvement of bioactivation by tyrosinase. Carcinogenesis 21(10), 1899–1907 (2000)

    Article  Google Scholar 

  55. Nelson, D.L., Lehninger, A.L., Cox, M.M.: Lehninger principles of biochemistry. Macmillan, NY (2008)

    Google Scholar 

  56. Nepal, D., Geckeler, K.E.: pH-sensitive dispersion and debundling of single-walled carbon nanotubes: lysozyme as a tool. Small 2(3), 406–412 (2006)

    Article  Google Scholar 

  57. O’connell, M.J., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Noon, W.H., Kittrell, C.: Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581), 593–596 (2002)

    Article  Google Scholar 

  58. Oberrecht, K.: The effects of rising sea levels. 2014 (4) (2014)

    Google Scholar 

  59. Ohta, K., Nishizawa, T., Nishiguchi, T., Shimizu, R., Hattori, Y., Inoue, S., Katayama, M., Mizu-Uchi, K., Kono, T.: Synthesis of carbon nanotubes by microwave heating: Influence of diameter of catalytic Ni nanoparticles on diameter of CNTs. J. Mater. Chem. A 2(8), 2773–2780 (2014)

    Article  Google Scholar 

  60. Ornston, L., Stanier, R.: The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida I. Biochemistry. J. Biol. Chem. 241(16), 3776–3786 (1966)

    Google Scholar 

  61. Pedrosa, V.A., Paliwal, S., Balasubramanian, S., Nepal, D., Davis, V., Wild, J., Ramanculov, E., Simonian, A.: Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes. Colloids Surf. B 77(1), 69–74 (2010)

    Article  Google Scholar 

  62. Poulios, I., Makri, D., Prohaska, X.: Photocatalytic treatment of olive milling waste water: oxidation of protocatechuic acid. Glob. Nest: Int J 1, 55–62 (1999)

    Google Scholar 

  63. Prasek, J., Drbohlavova, J., Chomoucka, J., Hubalek, J., Jasek, O., Adam, V., Kizek, R.: Methods for carbon nanotubes synthesis-review. J. Mater. Chem. 21(40), 15872–15884 (2011). doi:10.1039/c1jm12254a

    Article  Google Scholar 

  64. Ramani, K., Karthikeyan, S., Boopathy, R., Kennedy, L.J., Mandal, A., Sekaran, G.: Surface functionalized mesoporous activated carbon for the immobilization of acidic lipase and their application to hydrolysis of waste cooked oil: isotherm and kinetic studies. Process Biochem. 47(3), 435–445 (2012)

    Article  Google Scholar 

  65. Reznik, D., Olk, C., Neumann, D., Copley, J.: X-ray powder diffraction from carbon nanotubes and nanoparticles. Phys. Rev. B 52(1), 116 (1995)

    Article  Google Scholar 

  66. Rivas, F.J., Frades, J., Alonso, M.A., Montoya, C., Monteagudo, J.M.: Fenton’s oxidation of food processing wastewater components. Kinetic modeling of protocatechuic acid degradation. J. Agric. Food Chem. 53(26), 10097–10104 (2005). doi:10.1021/jf0512712

    Article  Google Scholar 

  67. San, N., Hatipoǧlu, A., Koçtürk, G., Çınar, Z.: Prediction of primary intermediates and the photodegradation kinetics of 3-aminophenol in aqueous TiO2 suspensions. J. Photochem. Photobiol. A 139(2), 225–232 (2001)

    Article  Google Scholar 

  68. Sarma, J., Mahiuddin, S.: Specific ion effect on the point of zero charge of α-alumina and on the adsorption of 3,4-dihydroxybenzoic acid onto α-alumina surface. Colloids Surf. A 457, 419–424 (2014). doi:10.1016/j.colsurfa.2014.06.014

    Article  Google Scholar 

  69. Shieh, Y.-T., Liu, G.-L., Wu, H.-H., Lee, C.-C.: Effects of polarity and pH on the solubility of acid-treated carbon nanotubes in different media. Carbon 45(9), 1880–1890 (2007)

    Article  Google Scholar 

  70. Siddique, M.H., St Pierre, C.C., Biswas, N., Bewtra, J.K., Taylor, K.E.: Immobilized enzyme catalyzed removal of 4-chlorophenol from aqueous solution. Water Res. 27(5), 883–890 (1993)

    Article  Google Scholar 

  71. Silva, ASd, Jacques, R.J.S., Andreazza, R., Bento, F.M., Camargo, FAdO: The effects of trace elements, cations, and environmental conditions on protocatechuate 3,4-dioxygenase activity. Scientia Agricola 70(2), 68–73 (2013)

    Article  Google Scholar 

  72. Sim, H.W., Jung, M., Cho, Y.K.: Purification and characterization of protocatechuate 3, 4-dioxygenase from Pseudomonas pseudoalcaligenes KF707. J. Korean Soc. Appl. Biol. Chem. 56(4), 401–408 (2013)

    Article  Google Scholar 

  73. Smith, B., Wepasnick, K., Schrote, K.E., Cho, H.-H., Ball, W.P., Fairbrother, D.H.: Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: A structure—property relationship. Langmuir 25(17), 9767–9776 (2009)

    Article  Google Scholar 

  74. Stanier, R., Ingraham, J.: Protocatechuic acid oxidase. J. Biol. Chem. 210(2), 799–808 (1954)

    Google Scholar 

  75. Subrizi, F., Crucianelli, M., Grossi, V., Passacantando, M., Pesci, L., Saladino, R.: Carbon nanotubes as activating tyrosinase supports for the selective synthesis of catechols. ACS Catal. 4(3), 810–822 (2014)

    Article  Google Scholar 

  76. Sun, Y.-P., Fu, K., Lin, Y., Huang, W.: Functionalized carbon nanotubes: properties and applications. Acc. Chem. Res. 35(12), 1096–1104 (2002)

    Article  Google Scholar 

  77. Takagi, Y., Tauchi, L., Nguyen-Tran, H.-D., Ohta, T., Shimizu, M., Ohta, K.: Development of a novel method to synthesize carbon nanotubes from granulated polystyrene and nickel nanoparticles by microwave heating. J. Mater. Chem. 21(38), 14569–14574 (2011)

    Article  Google Scholar 

  78. Tan, H., Feng, W., Ji, P.: Lipase immobilized on magnetic multi-walled carbon nanotubes. Bioresour. Technol. 115, 172–176 (2012)

    Article  Google Scholar 

  79. Tanaka, T., Kojima, T., Kawamori, T., Yoshimi, N., Mori, H.: Chemoprevention of diethylnitrosamine-induced hepatocarcinogenesis by a simple phenolic acid protocatechuic acid in rats. Can. Res. 53(12), 2775–2779 (1993)

    Google Scholar 

  80. UN-News (2008) Ban Ki-moon warns that water shortages are increasingly driving conflicts

    Google Scholar 

  81. UN (2013) The Report of the High-Level Panel of Eminent Persons on the Post-2015 Development Agenda. UN, New York

    Google Scholar 

  82. UN (2014) Water scarcity. UN. http://www.un.org/waterforlifedecade/scarcity.shtml. Accessed 4, September 2014

  83. UNESCAP: Building resilience to natural disasters and major economic crises. UNESCAP, Bangkok (2013)

    Google Scholar 

  84. Upadhyayula, V.K.K., Deng, S.G., Mitchell, M.C., Smith, G.B.: Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci. Total Environ. 408(1), 1–13 (2009). doi:10.1016/j.scitotenv.2009.09.027

    Article  Google Scholar 

  85. Verma, M.L., Naebe, M., Barrow, C.J., Puri, M.: Enzyme Immobilisation on amino-functionalised multi-walled carbon nanotubes: structural and biocatalytic characterisation. PLoS ONE 8(9), e73642 (2013)

    Article  Google Scholar 

  86. Wepasnick, K.A., Smith, B.A., Schrote, K.E., Wilson, H.K., Diegelmann, S.R., Fairbrother, D.H.: Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 49(1), 24–36 (2011)

    Article  Google Scholar 

  87. WHO (2002) World health report: Reducing risks, promoting healthy life. WHO. http://www.who.int/whr/2002/en/whr02_en.pdf. Accessed 5 Sept 2014

  88. WHO, UNICEF.: Global water supply and sanitation assessment, 2000 report. http://www.who.int/water_sanitation_health/monitoring/jmp2000.pdf (2000)

  89. WHO, UNICEF.: Progress on sanitation and drinking-water-2013 update: joint monitoring programme for water supply and sanitation (2013)

    Google Scholar 

  90. Wojtaś-Wasilewska, M., Luterek, J., Rogalski, J.: Immobilization of protocatechuate 3, 4-dioxygenase from Pleurotus ostreatus on activated porous glass beads. Phytochemistry 27(9), 2731–2733 (1988)

    Article  Google Scholar 

  91. Wojtaś-Wasilewska, M., Luterek, J., Leonowicz, A., Dawidowicz, A.: Dearomatization of lignin derivatives by fungal protocatechuate 3,4-dioxygenase immobilized on porosity glass. Biotechnol. Bioeng. 32(4), 507–511 (1988)

    Article  Google Scholar 

  92. WWAP: The United Nations World Water Development Report 3: Water in a Changing World. UNESCO/Earthscan, Paris/London (2009)

    Google Scholar 

  93. WWAP: The United Nations World Water Development Report 4: Managing Water Under Uncertainty and Risk. UNESCO, Paris (2012)

    Google Scholar 

  94. Wang, Z., Ci, L., Chen, L., Nayak, S., Ajayan, P.M., Koratkar, N.: Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes. Nano Lett. 7, 697–702 (2007)

    Article  Google Scholar 

  95. Xu, R., Chi, C., Li, F., Zhang, B.: Laccase-polyacrylonitrile nanofibrous membrane: highly immobilized, stable, Reusable, and Efficacious for 2,4,6-trichlorophenol removal. ACS Appl. Mater. Interfaces. 5(23), 12554–12560 (2013)

    Article  Google Scholar 

  96. Yang, H.Y., Han, Z.J., Yu, S.F., Pey, K.L., Ostrikov, K., Karnik, R. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nature Commun. 4, 2220 (2013)

    Google Scholar 

  97. Yoshimura, S., Chang, R.P.H.: Supercarbon: synthesis, properties and applications, vol. 33. Springer, Berlin (1998)

    Google Scholar 

  98. Zaborsky, O.R., Ogletree, J.: Immobilization of protocatechuate 3,4-dioxygenase with activated agarose. Biochimica et Biophysica Acta (BBA)-Enzymology 289 1, 68–76 (1972)

    Google Scholar 

  99. Zeng, L., Zhang, L., Barron, A.R.: Tailoring aqueous solubility of functionalized single-wall carbon nanotubes over a wide pH range through substituent chain length. Nano Lett. 5(10), 2001–2004 (2005)

    Article  Google Scholar 

  100. Zhang, G., Ma, J., Wang, J., Li, Y., Zhang, G., Zhang, F., Fan, X.: Lipase immobilized on graphene oxide as reusable biocatalyst. Ind. Eng. Chem. Res. 53(51), 19878–19883 (2014)

    Article  Google Scholar 

  101. Zhang, M., Su, L., Mao, L.: Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid. Carbon 44(2), 276–283 (2006)

    Article  Google Scholar 

  102. Zhao, Y.L., Stoddart, J.F.: Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 42(8), 1161–1171 (2009). doi:10.1021/ar900056z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasel Das .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Das, R. (2017). Introduction. In: Nanohybrid Catalyst based on Carbon Nanotube. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-58151-4_1

Download citation

Publish with us

Policies and ethics