Skip to main content

Decorated and Modified Graphenes as Electrodes in Na and Li-Ion Batteries

  • Chapter
  • First Online:
Book cover GraphITA

Part of the book series: Carbon Nanostructures ((CARBON))

  • 908 Accesses

Abstract

Nowadays, rechargeable Li-ion batteries represent the state of the art for the power supply in technological devices. However, the wide-scale implementation of this technology, for example in the automotive field or for large stationary applications, could raise issues, i.e. concerning the limited lithium mineral reserves. The investigation of alternatives to lithium is hence highly desirable, although it requires the identification of new materials suitable as components for new batteries, displaying similar or possibly even better performances with respect to the current systems. Here we show that electrodes based on graphene derivatives are able not only to support the insertion of Li+, but also of Na+ ions, with high capacity and stability upon cycling, leading to the development of novel Na-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., Cohen, Y., Moshkovich, M., Levi, E.: Prototype systems for rechargeable magnesium batteries. Nature 407(6805), 724–727 (2000)

    Article  Google Scholar 

  2. Carmichael, R.S.: Practical handbook of physical properties of rocks and minerals. CRC Press, Boca Raton (FL) (1989)

    Google Scholar 

  3. Cavallari, C., Pontiroli, D., Jimenez-Ruiz, M., Johnson, M., Aramini, M., Gaboardi, M., Parker, S.F., Ricco, M., Rols, S.: Hydrogen motions in defective graphene: the role of surface defects. Phys. Chem. Chem. Phys. 18(36), 24820–24824 (2016)

    Article  Google Scholar 

  4. Choi, J., Jin, J., Jung, I.G., Kim, J.M., Kim, H.J., Son, S.U.: SnSe2 nanoplate-graphene composites as anode materials for lithium ion batteries. Chem. Commun. 47(18), 5241–5243 (2011)

    Article  Google Scholar 

  5. Datta, D., Li, J., Shenoy, V.B.: Defective graphene as a high-capacity anode material for Na- and Ca-Ion batteries. ACS Appl. Mater. Interfaces 6(3), 1788–1795 (2014)

    Article  Google Scholar 

  6. Datta, M.K., Epur, R., Saha, P., Kadakia, K., Park, S.K., Kumta, P.N.: Tin and graphite based nanocomposites: potential anode for sodium ion batteries. J. Power Sour. 225, 316–322 (2013)

    Article  Google Scholar 

  7. Fan, C.-L., Chen, H.: Preparation, structure, and electrochemical performance of anodes from artificial graphite scrap for lithium ion batteries. J. Mater. Sci. 46(7), 2140–2147 (2010)

    Article  Google Scholar 

  8. Gaboardi, M., Bliersbach, A., Bertoni, G., Aramini, M., Vlahopoulou, G., Pontiroli, D., Mauron, P., Magnani, G., Salviati, G., Zuttel, A., Ricco, M.: Decoration of graphene with nickel nanoparticles: study of the interaction with hydrogen. J. Mater. Chem. A 2(4), 1039–1046 (2014)

    Article  Google Scholar 

  9. Hassoun, J., Bonaccorso, F., Agostini, M., Angelucci, M., Betti, M.G., Cingolani, R., Gemmi, M., Mariani, C., Panero, S., Pellegrini, V., Scrosati, B.: An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 14(8), 4901–4906 (2014)

    Article  Google Scholar 

  10. Kim, Y.-J., Park, M.-S., Sohn, H.-J., Lee, H.: Electrochemical behaviors of SnO and Sn anodes for lithium rechargeable batteries. J. Alloy. Compd. 509(12), 4367–4371 (2011)

    Article  Google Scholar 

  11. Kucinskis, G., Bajars, G., Kleperis, J.: Graphene in lithium ion battery cathode materials: a review. J. Power Sour. 240, 66–79 (2013)

    Article  Google Scholar 

  12. Lian, P., Zhu, X., Liang, S., Li, Z., Yang, W., Wang, H.: Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta 55(12), 3909–3914 (2010)

    Article  Google Scholar 

  13. Lin, M.-C., Gong, M., Lu, B., Wu, Y., Wang, D.-Y., Guan, M., Angell, M., Chen, C., Yang, J., Hwang, B.-J., Dai, H.: An ultrafast rechargeable aluminium-ion battery. Nature 520(7547), 324–328 (2015)

    Article  Google Scholar 

  14. McAllister, M.J., Li, J.-L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Milius, D.L., Car, R., Prud’homme, R.K., Aksay, I.A.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19(18), 4396–4404 (2007)

    Article  Google Scholar 

  15. Owens, B.: Batteries. Nature 526(7575), S89–S89 (2015)

    Article  Google Scholar 

  16. Palomares, V., Serras, P., Villaluenga, I., Hueso, K.B., Carretero-Gonzalez, J., Rojo, T.: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012)

    Article  Google Scholar 

  17. Paradiso, J.A., Starner, T.: Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput. 4(1), 18–27 (2005)

    Article  Google Scholar 

  18. Ponrouch, A., Goñi, A.R., Palacín, M.R.: High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem. Commun. 27, 85–88 (2013)

    Article  Google Scholar 

  19. Pontiroli, D., Aramini, M., Gaboardi, M., Mazzani, M., Sanna, S., Caracciolo, F., Carretta, P., Cavallari, C., Rols, S., Tatti, R., Aversa, L., Verucchi, R., Riccò, M.: Tracking the hydrogen motion in defective graphene. J. Phys. Chem. C 118(13), 7110–7116 (2014)

    Article  Google Scholar 

  20. Pramudita, J.C., Pontiroli, D., Magnani, G., Gaboardi, M., Riccò, M., Milanese, C., Brand, H.E.A., Sharma, N.: Graphene and selected derivatives as negative electrodes in sodium- and lithium-ion batteries. ChemElectroChem 2(4), 600–610 (2015)

    Article  Google Scholar 

  21. Riccò, M., Pontiroli, D., Mazzani, M., Choucair, M., Stride, J.A., Yazyev, O.V.: Muons probe strong hydrogen interactions with defective graphene. Nano Lett. 11(11), 4919–4922 (2011)

    Article  Google Scholar 

  22. Slater, M.D., Kim, D., Lee, E., Johnson, C.S.: Sodium-Ion Batteries. Adv. Func. Mater. 23(8), 947–958 (2013)

    Article  Google Scholar 

  23. Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001)

    Article  Google Scholar 

  24. Wang, J., Zhao, H., Wen, Y., Xie, J., Xia, Q., Zhang, T., Zeng, Z., Du, X.: High performance Li4Ti5O12 material as anode for lithium-ion batteries. Electrochim. Acta 113, 679–685 (2013)

    Article  Google Scholar 

  25. Wu, L., Buchholz, D., Bresser, D., Gomes Chagas, L., Passerini, S.: Anatase TiO2 nanoparticles for high power sodium-ion anodes. J. Power Sour. 251, 379–385 (2014)

    Google Scholar 

  26. Xiong, H., Slater, M.D., Balasubramanian, M., Johnson, C.S., Rajh, T.: Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2(20), 2560–2565 (2011)

    Article  Google Scholar 

  27. Yabuuchi, N., Kubota, K., Dahbi, M., Komaba, S.: Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Cariplo foundation (Project number 2013–0592, “Carbon based nanostructures for innovative hydrogen storage systems”) and IRSES-EU Project MagNonMag nr. 295180.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Riccò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pontiroli, D. et al. (2017). Decorated and Modified Graphenes as Electrodes in Na and Li-Ion Batteries. In: Morandi, V., Ottaviano, L. (eds) GraphITA . Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-58134-7_11

Download citation

Publish with us

Policies and ethics