Skip to main content

Dynamics of Self-replicating DNA-Tile Patterns

  • Conference paper
  • First Online:
Mining Intelligence and Knowledge Exploration (MIKE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10089))

  • 587 Accesses

Abstract

DNA tiles serve as molecular components for the self-assembly of programmable 2-dimensional patterns at the nanoscale. To produce identical copies of a pre-assembled DNA tile pattern, we use a theoretical framework of non enzymatic cross-coupled self-replication system based on tile self-assembly model. This paper presents a kinetic modelling of the pattern self-replication and analyses the influence of physicochemical parameters of tile self-assembly process over the reliability and replication gain. We demonstrate that the tile assembly errors, introduced in tile patterns during their assembly, set a limit over the size of a tile pattern that can be replicated exponentially and reliably.

R. Prasath—A part of this was carried out when the author was in Indian Institute of Information Technology (IIIT) Sricity, India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Macroscopic kinetic rate refers to an approximate kinetic rate for a terminal assembly process, as discussed in  [4].

  2. 2.

    z-transform is a linear operator that is applied to convert non-linear difference equations of time (i) domain into linear equations of frequency domain.

References

  1. Abel, Z., Benbernou, N., Damian, M., Demaine, E.D., Demaine, M.L., Flatland, R.Y., Kominers, S.D., Schweller, R.T.: Shape replication through self-assembly and RNase enzymes. In: SODA, pp. 1045–1064. SIAM (2010)

    Google Scholar 

  2. Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running time and program size for self-assembled squares. In: Symposium on Theory of Computing (STOC), New York, pp. 740–748 (2001)

    Google Scholar 

  3. Barish, R.D., Rothemund, P.W., Winfree, E.: Two computational primitives for algorithmic self-assembly: copying and counting. Nano Lett. 5(12), 2586–2592 (2005)

    Article  Google Scholar 

  4. Czeizler, E., Popa, A.: Synthesizing minimal tile sets for complex patterns in the framework of patterned DNA self-assembly. Theor. Comput. Sci. 499, 23–37 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fujibayashi, K., Zhang, D.Y., Winfree, E., Murata, S.: Error suppression mechanisms for DNA tile self-assembly and their simulation. Nat. Comput. 8(3), 589–612 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gautam, V.K., Czeizler, E., Haddow, P.C., Kuiper, M.: Design of a minimal system for self-replication of rectangular patterns of DNA tiles. In: Dediu, A.-H., Lozano, M., Martín-Vide, C. (eds.) TPNC 2014. LNCS, vol. 8890, pp. 119–133. Springer, Cham (2014). doi:10.1007/978-3-319-13749-0_11

    Google Scholar 

  7. Gautam, V.K., Haddow, P.C., Kuiper, M.: Reliable self-assembly by self-triggered activation of enveloped DNA tiles. In: Dediu, A.-H., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 68–79. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45008-2_6

    Chapter  Google Scholar 

  8. Chen, H.-L., Goel, A.: Error free self-assembly using error prone tiles. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 62–75. Springer, Heidelberg (2005). doi:10.1007/11493785_6

    Chapter  Google Scholar 

  9. Keenan, A., Schweller, R.T., Zhong, X.: Exponential replication of patterns in the signal tile assembly model. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 118–132. Springer, Cham (2013). doi:10.1007/978-3-319-01928-4_9

    Chapter  Google Scholar 

  10. von Kiedrowski, G.: A self-replicating hexadeoxynucleotide. Angew. Chem. Int. Ed. Engl. 25(10), 932–935 (1986)

    Article  Google Scholar 

  11. Majumder, U., LaBean, T.H., Reif, J.H.: Activatable tiles: compact, robust programmable assembly and other applications. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 15–25. Springer, Heidelberg (2008). doi:10.1007/978-3-540-77962-9_2

    Chapter  Google Scholar 

  12. Rothemund, P.W., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), e424 (2004)

    Article  Google Scholar 

  13. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, STOC 2000, pp. 459–468. ACM (2000)

    Google Scholar 

  14. Schulman, R., Winfree, E.: Self-replication and evolution of DNA crystals. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 734–743. Springer, Heidelberg (2005). doi:10.1007/11553090_74

    Chapter  Google Scholar 

  15. Schulman, R., Yurke, B., Winfree, E.: Robust self-replication of combinatorial information via crystal growth and scission. Proc. Natl. Acad. Sci. 109(17), 6405–6410 (2012)

    Article  Google Scholar 

  16. Szathmry, E., Gladkih, I.: Sub-exponential growth and coexistence of non-enzymatically replicating templates. J. Theor. Biol. 138(1), 55–58 (1989)

    Article  Google Scholar 

  17. Wang, H.: Proving theorems by pattern recognition II. Bell Syst. Tech. J. 40, 1–42 (1961)

    Article  Google Scholar 

  18. Wang, T., Sha, R., Dreyfus, R., Leunissen, M.E., Maass, C., Pine, D.J., Chaikin, P.M., Seeman, N.C.: Self-replication of information-bearing nanoscale patterns. Nature 478(7368), 225–228 (2011)

    Article  Google Scholar 

  19. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)

    Article  Google Scholar 

  20. Winfree, E.: Algorithmic Self-Assembly of DNA. Ph. D. thesis, California Institute of Technology Pasadena, California, USA (1998)

    Google Scholar 

  21. Winfree, E., Bekbolatov, R.: Proofreading tile sets: error correction for algorithmic self-assembly. In: Chen, J., Reif, J. (eds.) DNA 2003. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24628-2_13

    Chapter  Google Scholar 

  22. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318(5853), 1121–1125 (2007)

    Article  Google Scholar 

  23. Zhang, D.Y., Yurke, B.: A DNA superstructure-based replicator without product inhibition. Nat. Comput. 5(2), 183–202 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Kumar Gautam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gautam, V.K., Prasath, R. (2017). Dynamics of Self-replicating DNA-Tile Patterns. In: Prasath, R., Gelbukh, A. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2016. Lecture Notes in Computer Science(), vol 10089. Springer, Cham. https://doi.org/10.1007/978-3-319-58130-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58130-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58129-3

  • Online ISBN: 978-3-319-58130-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics