Skip to main content

A Multilevel Genetic Algorithm for the Maximum Constraint Satisfaction Problem

  • Conference paper
  • First Online:
Recent Advances in Soft Computing (ICSC-MENDEL 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 576))

Included in the following conference series:

  • 357 Accesses

Abstract

The constraint satisfaction problem is a useful and well-studied framework for the modeling of many problems rising in Artificial Intelligence and other areas of Computer Science. As many real-world optimization problems become increasingly complex and hard to solve, better optimization algorithms are always needed. Genetic algorithms (GA) which belongs to the class of evolutionary algorithms is regarded as a highly successful algorithm when applied to a broad range of discrete as well continuous optimization problems. This paper introduces a hybrid approach combining a genetic algorithm with the multilevel paradigm for solving the maximum constraint satisfaction problem. The promising performances achieved by the proposed approach is demonstrated by comparisons made to solve conventional random benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bacanin, N., Tuba, M.: Artificial bee colony (ABC) algorithm for constrained optimization improved with genetic operators. Stud. Inf. Control 21(2), 137–146 (2012)

    Google Scholar 

  2. Bonyadi, M., Li, X., Michalewicz, Z.: A hybrid particle swarm with velocity mutation for constraint optimization problems. In: Genetic and Evolutionary Computation Conference, pp. 1–8. ACM, New York (2013). ISBN 978-1-4503-1963-8

    Google Scholar 

  3. Bouhmala, N.: A variable depth search algorithm for binary constraint satisfaction problems. Math. Prob. Eng. 2015, 10 (2015). doi:10.1155/2015/637809. Article ID 637809

    Article  Google Scholar 

  4. Curran, D., Freuder, E., Jansen., T.: Incremental evolution of local search heuristics. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO 2010, pp. 981–982. ACM, New York (2010)

    Google Scholar 

  5. Davenport, A., Tsang, E., Wang, C.J., Zhu, K.: Genet: a connectionist architecture for solving constraint satisfaction problems by iterative improvement. In: Proceedings of the Twelfth National Conference on Artificial Intelligence (1994)

    Google Scholar 

  6. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artif. Intell. 38, 353–366 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gent, I.P., MacIntyre, E., Prosser, P., Walsh, T.: The constrainedness of search. In: Proceedings of the AAAI 1996, pp. 246–252 (1996)

    Google Scholar 

  8. Fang, S., Chu, Y., Qiao, K., Feng, X., Xu, K.: Combining edge weight and vertex weight for minimum vertex cover problem. FAW 2014, 71–81 (2014)

    MATH  Google Scholar 

  9. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  10. Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and probabilistic smoothing: efficient dynamic local search for SAT. In: Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 233–248. Springer, Heidelberg (2002). doi:10.1007/3-540-46135-3_16

    Chapter  Google Scholar 

  11. Karim, M.R.: A new approach to constraint weight learning for variable ordering in CSPs. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2014), Beijing, China, pp. 2716–2723 (2014)

    Google Scholar 

  12. Lee, H.-J., Cha, S.-J., Yu, Y.-H., Jo, G.-S.: Large neighborhood search using constraint satisfaction techniques in vehicle routing problem. In: Gao, Y., Japkowicz, N. (eds.) AI 2009. LNCS (LNAI), vol. 5549, pp. 229–232. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01818-3_30

    Chapter  Google Scholar 

  13. Morris, P.: The breakout method for escaping from local minima. In: Proceeding AAAI 1993 Proceedings of the Eleventh National Conference on Artificial Intelligence, pp. 40–45 (1993)

    Google Scholar 

  14. Minton, S., Johnson, M., Philips, A., Laird, P.: Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling scheduling problems. Artif. Intell. 58, 161–205 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pullan, W., Mascia, F., Brunato, M.: Cooperating local search for the maximum clique problems. J. Heuristics 17, 181–199 (2011)

    Article  Google Scholar 

  16. Schuurmans, D., Southey, F., Holte, R.: The exponentiated subgradient algorithm for heuristic Boolean programming. In: 17th International Joint Conference on Artificial Intelligence, pp. 334–341. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  17. Stützle., T.: Local search algorithms for combinatorial problems - analysis, improvements, and new applications. Ph.D. thesis, TU Darmstadt, FB Informatics, Darmstadt, Germany (1998)

    Google Scholar 

  18. Wallace, R.J., Freuder, E.C.: Heuristic methods for over-constrained constraint satisfaction problems. In: Jampel, M., Freuder, E., Maher, M. (eds.) OCS 1995. LNCS, vol. 1106, pp. 207–216. Springer, Heidelberg (1996). doi:10.1007/3-540-61479-6_23

    Chapter  Google Scholar 

  19. Xu, W.: Satisfiability transition and experiments on a random constraint satisfaction problem model. Int. J. Hybrid Inf. Technol. 7(2), 191–202 (2014)

    Article  Google Scholar 

  20. Zhou, Y., Zhou, G., Zhang, J.: A hybrid glowworm swarm optimization algorithm for constrained engineering design problems. Appl. Math. Inf. Sci. 7(1), 379–388 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Bouhmala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bouhmala, N., Helgen, H.S., Mathisen, K.M. (2017). A Multilevel Genetic Algorithm for the Maximum Constraint Satisfaction Problem. In: Matoušek, R. (eds) Recent Advances in Soft Computing. ICSC-MENDEL 2016. Advances in Intelligent Systems and Computing, vol 576. Springer, Cham. https://doi.org/10.1007/978-3-319-58088-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58088-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58087-6

  • Online ISBN: 978-3-319-58088-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics