Advertisement

Explaining Graph Navigational Queries

  • Valeria Fionda
  • Giuseppe PirròEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10249)

Abstract

Graph navigational languages allow to specify pairs of nodes in a graph subject to the existence of paths satisfying a certain regular expression. Under this evaluation semantics, connectivity information in terms of intermediate nodes/edges that contributed to the answer is lost. The goal of this paper is to introduce the GeL language, which provides query evaluation semantics able to also capture connectivity information and output graphs. We show how this is useful to produce query explanations. We present efficient algorithms to produce explanations and discuss their complexity. GeL machineries are made available into existing SPARQL processors thanks to a translation from GeL queries into CONSTRUCT SPARQL queries. We outline examples of explanations obtained with a tool implementing our framework and report on an experimental evaluation that investigates the overhead of producing explanations.

References

  1. 1.
    Acosta, M., Vidal, M.-E.: Networks of linked data eddies: an adaptive web query processing engine for RDF data. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 111–127. Springer, Cham (2015). doi: 10.1007/978-3-319-25007-6_7CrossRefGoogle Scholar
  2. 2.
    Alkhateeb, F., Baget, J.-F., Euzenat, J.: Extending SPARQL with regular expression patterns (for querying RDF). J. Web Sem. 7(2), 57–73 (2009)CrossRefGoogle Scholar
  3. 3.
    Anyanwu, K., Maduko, A., Sheth, A.: SPARQ2L: towards support for subgraph extraction queries in RDF databases. In: WWW, pp. 797–806. ACM (2007)Google Scholar
  4. 4.
    Anyanwu, K., Sheth, A.: p-Queries: enabling querying for semantic associations on the semantic web. In: WWW, pp. 690–699. ACM (2003)Google Scholar
  5. 5.
    Barceló, P., Libkin, L., Lin, A.W., Wood, P.T.: Expressive languages for path queries over graph-structured data. ACM TODS 37(4), 31 (2012)CrossRefGoogle Scholar
  6. 6.
    Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Containment of conjunctive regular path queries with inverse. In: KR, pp. 176–185 (2000)Google Scholar
  7. 7.
    Cheng, G., Zhang, Y., Explass, Y.: Exploring associations between entities via top-k ontological patterns and facets. In: Proceedings of ISWC, pp. 422–437 (2014)Google Scholar
  8. 8.
    Consens, M.P., Liu, J.W.S., Rizzolo, F.: Xplainer: visual explanations of XPath queries. In: ICDE, pp. 636–645. IEEE (2007)Google Scholar
  9. 9.
    Dividino, R., Sizov, S., Staab, S., Schueler, B.: Querying for provenance, trust, uncertainty and other meta knowledge in RDF. J. Web Semant. 7(3), 204–219 (2009)CrossRefGoogle Scholar
  10. 10.
    Fionda, V., Pirrò, G., Consens, M.P., Paths, E.P.: Writing more SPARQL queries in a succinct way. In: AAAI (2015)Google Scholar
  11. 11.
    Fionda, V., Gutierrez, C., Pirrò, G.: Building knowledge maps of web graphs. Artif. Intell. 239, 143–167 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fionda, V., Pirrò, G., Gutierrez, C.: NautiLOD: a formal language for the web of data graph. ACM Trans. Web 9(1), 5:1–5:43 (2015)CrossRefGoogle Scholar
  13. 13.
    Hartig, O., Pérez, J.: LDQL: a query language for the web of linked data. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 73–91. Springer, Cham (2015). doi: 10.1007/978-3-319-25007-6_5CrossRefGoogle Scholar
  14. 14.
    Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T.: RelFinder: revealing relationships in RDF knowledge bases. In: Semantic Multimedia, pp. 182–187 (2009)CrossRefGoogle Scholar
  15. 15.
    Lehmann, J., Bühmann, L.: AutoSPARQL: let users query your knowledge base. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 63–79. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21034-1_5CrossRefGoogle Scholar
  16. 16.
    Pérez, J., Arenas, M., Gutierrez, C.: nSPARQL: a navigational language for RDF. J. Web Semant. 8(4), 255–270 (2010)CrossRefGoogle Scholar
  17. 17.
    Pirrò, G.: Explaining and suggesting relatedness in knowledge graphs. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 622–639. Springer, Cham (2015). doi: 10.1007/978-3-319-25007-6_36CrossRefGoogle Scholar
  18. 18.
    Reutter, J.L., Soto, A., Vrgoč, D.: Recursion in SPARQL. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 19–35. Springer, Cham (2015). doi: 10.1007/978-3-319-25007-6_2CrossRefGoogle Scholar
  19. 19.
    Rousset, M.-C., Ulliana, F.: Extracting bounded-level modules from deductive RDF triplestores. In: Proceedings of the AAAI (2015)Google Scholar
  20. 20.
    Then, M., Kaufmann, M., Chirigati, F., Hoang-Vu, T., Pham, K., Kemper, A., Neumann, T., Vo, H.T.: The more the merrier: efficient multi-source graph traversal. VLDB Endowment 8(4), 449–460 (2014)CrossRefGoogle Scholar
  21. 21.
    Tiddi, I., d’Aquin, M., Motta, E.: An ontology design pattern to define explanations. In: K-CAP, p. 3 (2015)Google Scholar
  22. 22.
    Zimmermann, A., Lopes, N., Polleres, A., Straccia, U.: A feneral framework for representing, reasoning and querying with annotated semantic web data. J. Web Semant. 11, 72–95 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.DeMaCSUniversity of CalabriaRendeItaly
  2. 2.Institute for High Performance Computing and Networking, ICAR-CNRRendeItaly

Personalised recommendations