Skip to main content

Optical Coherence Tomography: A Review

  • Chapter
  • First Online:
Interventions in Pulmonary Medicine

Abstract

Optical coherence tomography (OCT), with polarization-sensitive (PS), Doppler, and autofluorescence (AF) capabilities, is emerging as a promising bronchoscopic diagnostic tool. In the upper and central airways, it allows accurate real-time airway measurements to assist bronchoscopic assessment of obstructive sleep apnea, severity of tracheomalacia, airway stenosis, or extent of tumor involvement into the bronchial wall or distally beyond the bronchoscopic view. OCT can visualize cellular and extracellular structures at and below the tissue surface with near histologic resolution as well as to provide three-dimensional imaging of the airways. Blood vessels in the bronchial wall or peribronchial space can be displayed using Doppler OCT or AF-OCT. Biochemical information can be extracted using PS-OCT and AF-OCT. With miniaturized imaging probes, the entire airway can be evaluated down to the terminal bronchioles and adjacent lung parenchyma for diagnosis and evaluation of therapeutic interventions in both malignant and nonmalignant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF, et al. The global burden of cancer 2013. JAMA Oncol. 2015;1(4):505–27. Epub 2015/07/17

    Article  PubMed  Google Scholar 

  2. Lortet-Tieulent J, Soerjomataram I, Ferlay J, Rutherford M, Weiderpass E, Bray F. International trends in lung cancer incidence by histological subtype: adenocarcinoma stabilizing in men but still increasing in women. Lung Cancer. 2014;84(1):13–22. Epub 2014/02/15

    Article  CAS  PubMed  Google Scholar 

  3. Schreiber G, McCrory DC. Performance characteristics of different modalities for diagnosis of suspected lung cancer: summary of published evidence. Chest. 2003;123(1 Suppl):115S–28S. Epub 2003/01/16

    Article  PubMed  Google Scholar 

  4. Wang Memoli JS, Nietert PJ, Silvestri GA. Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule. Chest. 2012;142(2):385–93. Epub 2011/10/08

    Article  PubMed  Google Scholar 

  5. Chen A, Chenna P, Loiselle A, Massoni J, Mayse M, Misselhorn D. Radial probe endobronchial ultrasound for peripheral pulmonary lesions. A 5-year institutional experience. Ann Am Thorac Soc. 2014;11(4):578–82. Epub 2014/03/19

    Article  PubMed  Google Scholar 

  6. Eberhardt R, Kahn N, Gompelmann D, Schumann M, Heussel CP, Herth FJ. LungPoint--a new approach to peripheral lesions. J Thorac Oncol. 2010;5(10):1559–63. Epub 2010/08/31

    Article  PubMed  Google Scholar 

  7. Ost DE, Ernst A, Lei X, Kovitz KL, Benzaquen S, Diaz-Mendoza J, et al. Diagnostic yield and complications of bronchoscopy for peripheral lung lesions. Results of the AQuIRE registry. Am J Respir Crit Care Med. 2016;193(1):68–77. Epub 2015/09/15

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kothary N, Lock L, Sze DY, Hofmann LV. Computed tomography-guided percutaneous needle biopsy of pulmonary nodules: impact of nodule size on diagnostic accuracy. Clin Lung Cancer. 2009;10(5):360–3. Epub 2009/10/08

    Article  PubMed  Google Scholar 

  9. Heyer CM, Reichelt S, Peters SA, Walther JW, Muller KM, Nicolas V. Computed tomography-navigated transthoracic core biopsy of pulmonary lesions: which factors affect diagnostic yield and complication rates? Acad Radiol. 2008;15(8):1017–26. Epub 2008/07/16

    Article  PubMed  Google Scholar 

  10. Church TR, Black WC, Aberle DR, Berg CD, Clingan KL, Duan F, et al. Results of initial low-dose computed tomographic screening for lung cancer. N Engl J Med. 2013;368(21):1980–91. Epub 2013/05/24

    Article  PubMed  Google Scholar 

  11. Aberle DR, DeMello S, Berg CD, Black WC, Brewer B, Church TR, et al. Results of the two incidence screenings in the National Lung Screening Trial. N Engl J Med. 2013;369(10):920–31. Epub 2013/09/06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wiener RS, Schwartz LM, Woloshin S, Welch HG. Population-based risk for complications after transthoracic needle lung biopsy of a pulmonary nodule: an analysis of discharge records. Ann Intern Med. 2011;155(3):137–44. Epub 2011/08/04

    Article  PubMed  PubMed Central  Google Scholar 

  13. Steinfort DP, Khor YH, Manser RL, Irving LB. Radial probe endobronchial ultrasound for the diagnosis of peripheral lung cancer: systematic review and meta-analysis. Eur Respir J. 2011;37(4):902–10. Epub 2010/08/10

    Article  CAS  PubMed  Google Scholar 

  14. Fujimoto JG, De Silvestri S, Ippen EP, Puliafito CA, Margolis R, Oseroff A. Femtosecond optical ranging in biological systems. Opt Lett. 1986;11(3):150. Epub 1986/03/01

    Article  CAS  PubMed  Google Scholar 

  15. Youngquist RC, Carr S, Davies DE. Optical coherence-domain reflectometry: a new optical evaluation technique. Opt Lett. 1987;12(3):158–60. Epub 1987/03/01

    Article  CAS  PubMed  Google Scholar 

  16. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tearney GJ, Brezinski ME, Boppart SA, Bouma BE, Weissman N, Southern JF, et al. Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery. Circulation. 1996;94(11):3013. Epub 1996/12/01

    Article  CAS  PubMed  Google Scholar 

  18. Fujimoto JG, Brezinski ME, Tearney GJ, Boppart SA, Bouma B, Hee MR, et al. Optical biopsy and imaging using optical coherence tomography. Nat Med. 1995;1(9):970–2.

    Article  CAS  PubMed  Google Scholar 

  19. Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C, Southern JF, et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science. 1997;276(5321):2037–9.

    Article  CAS  PubMed  Google Scholar 

  20. Tsuboi M, Hayashi A, Ikeda N, Honda H, Kato Y, Ichinose S, et al. Optical coherence tomography in the diagnosis of bronchial lesions. Lung Cancer. 2005;49(3):387–94.

    Article  PubMed  Google Scholar 

  21. Lam S, Standish B, Baldwin C, McWilliams A, leRiche J, Gazdar A, et al. In vivo optical coherence tomography imaging of preinvasive bronchial lesions. Clin Cancer Res. 2008;14(7):2006–11. Epub 2008/04/03

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fercher AF, Mengedoht K, Werner W. Eye-length measurement by interferometry with partially coherent light. Opt Lett. 1988;13(3):186–8. Epub 1988/03/01

    Article  CAS  PubMed  Google Scholar 

  23. Choma M, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express. 2003;11(18):2183–9. Epub 2003/09/08

    Article  PubMed  Google Scholar 

  24. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett. 2003;28(21):2067–9. Epub 2003/11/01

    Article  PubMed  Google Scholar 

  25. Leitgeb R, Hitzenberger C, Fercher A. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express. 2003;11(8):889–94. Epub 2003/04/21

    Article  CAS  PubMed  Google Scholar 

  26. Wojtkowski M, Bajraszewski T, Targowski P, Kowalczyk A. Real-time in vivo imaging by high-speed spectral optical coherence tomography. Opt Lett. 2003;28(19):1745–7. Epub 2003/09/30

    Article  CAS  PubMed  Google Scholar 

  27. Yun SH, Tearney GJ, de Boer JF, Iftimia N, Bouma BE. High-speed optical frequency-domain imaging. Opt Express. 2003;11(22):2953–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Izatt JA, Kulkarni MD, Yazdanfar S, Barton JK, Welch AJ. In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt Lett. 1997;22(18):1439–41. Epub 2008/01/12

    Article  CAS  PubMed  Google Scholar 

  29. Yang V, Gordon M, Qi B, Pekar J, Lo S, Seng-Yue E, et al. High speed, wide velocity dynamic range Doppler optical coherence tomography (part I): system design, signal processing, and performance. Opt Express. 2003;11(7):794–809. Epub 2003/04/07

    Article  PubMed  Google Scholar 

  30. Lee AMD, Ohtani K, MacAulay C, McWilliams A, Shaipanich T, Yang VXD, et al. In vivo lung microvasculature visualized in three dimensions using fiber-optic color Doppler optical coherence tomography. J Biomed Opt. 2013;18(5):50501.

    Article  PubMed  Google Scholar 

  31. Park BH, Saxer C, Srinivas SM, Nelson JS, de Boer JF. In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. J Biomed Opt. 2001;6(4):474–9. Epub 2001/12/01

    Article  CAS  PubMed  Google Scholar 

  32. Nadkarni SK, Pierce MC, Park BH, de Boer JF, Whittaker P, Bouma BE, et al. Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography. J Am Coll Cardiol. 2007;49(13):1474–81. Epub 2007/04/03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Burns JA, Kim KH, deBoer JF, Anderson RR, Zeitels SM. Polarization-sensitive optical coherence tomography imaging of benign and malignant laryngeal lesions: an in vivo study. Otolaryngol Head Neck Surg. 2011;145(1):91–9. Epub 2011/04/16

    Article  PubMed  Google Scholar 

  34. Braaf B, Vermeer KA, de Groot M, Vienola KV, de Boer JF. Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions. Biomed Opt Express. 2014;5(8):2736–58. Epub 2014/08/20

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zotter S, Pircher M, Torzicky T, Baumann B, Yoshida H, Hirose F, et al. Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology. Biomed Opt Express. 2012;3(11):2720–32. Epub 2012/11/20

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hee MR, Huang D, Swanson EA, Fujimoto JG. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J Opt Soc Am B. 1992;9(6):903–8.

    Article  Google Scholar 

  37. deBoer JF, Milner TE, vanGemert MJC, Nelson JS. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett. 1997;22(12):934–6.

    Article  CAS  Google Scholar 

  38. Kim KH, Park BH, YP T, Hasan T, Lee B, Li JA, et al. Polarization-sensitive optical frequency domain imaging based on unpolarized light. Opt Express. 2011;19(2):552–61.

    Article  CAS  PubMed  Google Scholar 

  39. Baumann B, Choi W, Potsaid B, Huang D, Duker JS, Fujimoto JG. Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit. Opt Express. 2012;20(9):10229–41.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee AM, Pahlevaninezhad H, Yang VX, Lam S, MacAulay C, Lane P. Fiber-optic polarization diversity detection for rotary probe optical coherence tomography. Opt Lett. 2014;39(12):3638–41. Epub 2014/07/01

    Article  PubMed  Google Scholar 

  41. Pahlevaninezhad H, Lee AMD, Shaipanich T, Raizada R, Cahill L, Hohert G, et al. A high-efficiency fiber-based imaging system for co-registered autofluorescence and optical coherence tomography. Biomed Opt Express. 2014;5(9):2978–87.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lam S. The role of autofluorescence bronchoscopy in diagnosis of early lung cancer. In: Hirsch F, Bunn P, Kato H, et al., editors. IASLC textbook for prevention and detection of early lung cancer. London: Taylor & Francis; 2006. p. 149–58.

    Google Scholar 

  43. Wagnieres G, McWilliams A, Lung SL. Cancer imaging with fluorescence endoscopy. In: Mycek MA, Pogue BW, editors. Handbook of biomedical fluorescence. New York: CRC Press; 2003. p. 361–96.

    Google Scholar 

  44. McWilliams A, Shaipanich T, Lam S. Fluorescence and navigational bronchoscopy. Thorac Surg Clin. 2013;23(2):153–61. Epub 2013/04/10

    Article  PubMed  Google Scholar 

  45. Pahlevaninezhad H, Lee AM, Ritchie A, Shaipanich T, Zhang W, Ionescu DN, et al. Endoscopic Doppler optical coherence tomography and autofluorescence imaging of peripheral pulmonary nodules and vasculature. Biomed Opt Express. 2015;6(10):4191–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Madore WJ, De Montigny E, Ouellette O, Lemire-Renaud S, Leduc M, Daxhelet X, et al. Asymmetric double-clad fiber couplers for endoscopy. Opt Lett. 2013;38(21):4514–7. Epub 2013/11/02

    Article  PubMed  Google Scholar 

  47. Lorenser D, Yang X, Kirk RW, Quirk BC, McLaughlin RA, Sampson DD. Ultrathin side-viewing needle probe for optical coherence tomography. Opt Lett. 2011;36(19):3894–6. Epub 2011/10/04

    Article  CAS  PubMed  Google Scholar 

  48. Scolaro L, Lorenser D, Madore WJ, Kirk RW, Kramer AS, Yeoh GC, et al. Molecular imaging needle: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue. Biomed Opt Express. 2015;6(5):1767–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pahlevaninezhad H, Lee AM, Hohert G, Lam S, Shaipanich T, Beaudoin E, et al. Endoscopic high-resolution autofluorescence imaging and OCT of pulmonary vascular networks. Opt Lett. 2016;41(14):3209–12.

    Article  PubMed  Google Scholar 

  50. Lee AM, Kirby M, Ohtani K, Candido T, Shalansky R, MacAulay C, et al. Validation of airway wall measurements by optical coherence tomography in porcine airways. PLoS One. 2014;9(6):e100145. Epub 2014/06/21

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hariri LP, Applegate MB, Mino-Kenudson M, Mark EJ, Bouma BE, Tearney GJ, et al. Optical frequency domain imaging of ex vivo pulmonary resection specimens: obtaining one to one image to histopathology correlation. J Vis Exp. 2013; 22(71). pii:3855.doi:10.3791/3855.

    Google Scholar 

  52. Hariri LP, Applegate MB, Mino-Kenudson M, Mark EJ, Medoff BD, Luster AD, et al. Volumetric optical frequency domain imaging of pulmonary pathology with precise correlation to histopathology. Chest. 2013;143(1):64–74. Epub 2012/03/31

    Article  PubMed  Google Scholar 

  53. Ohtani K, Lee AM, Lam S. Frontiers in bronchoscopic imaging. Respirology. 2012;17(2):261–9. Epub 2011/12/01

    Article  PubMed  Google Scholar 

  54. Pahlevaninezhad H, Lee AM, Lam S, MacAulay C, Lane PM. Coregistered autofluorescence-optical coherence tomography imaging of human lung sections. J Biomed Opt. 2014;19(3):36022. Epub 2014/04/02

    Article  PubMed  Google Scholar 

  55. Chen Y, Ding M, Guan WJ, Wang W, Luo WZ, Zhong CH, et al. Validation of human small airway measurements using endobronchial optical coherence tomography. Respir Med. 2015;109(11):1446–53. Epub 2015/10/03

    Article  PubMed  Google Scholar 

  56. Tan KM, Shishkov M, Chee A, Applegate MB, Bouma BE, Suter MJ. Flexible transbronchial optical frequency domain imaging smart needle for biopsy guidance. Biomed Opt Express. 2012;3(8):1947–54. Epub 2012/08/10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kirby M, Ohtani K, Nickens T, Lisbona RM, Lee AM, Shaipanich T, et al. Reproducibility of optical coherence tomography airway imaging. Biomed Opt Express. 2015;6(11):4365–77. Epub 2015/11/26

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hariri LP, Mino-Kenudson M, Applegate MB, Mark EJ, Tearney GJ, Lanuti M, et al. Toward the guidance of transbronchial biopsy: identifying pulmonary nodules with optical coherence tomography. Chest. 2013;144(4):1261–8. Epub 2013/07/06

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hariri LP, Villiger M, Applegate MB, Mino-Kenudson M, Mark EJ, Bouma BE, et al. Seeing beyond the bronchoscope to increase the diagnostic yield of bronchoscopic biopsy. Am J Respir Crit Care Med. 2013;187(2):125–9. Epub 2013/01/17

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hariri LP, Mino-Kenudson M, Lanuti M, Miller AJ, Mark EJ, Suter MJ. Diagnosing lung carcinomas with optical coherence tomography. Ann Am Thorac Soc. 2015;12(2):193–201. Epub 2015/01/07

    Article  PubMed  PubMed Central  Google Scholar 

  61. Trivedi A, Pavord ID, Castro M. Bronchial thermoplasty and biological therapy as targeted treatments for severe uncontrolled asthma. Lancet Respir Med 2016;4(7):585–92. Review.

    Google Scholar 

  62. Kirby M, Ohtani K, Lopez Lisbona RM, Lee AM, Zhang W, Lane P, et al. Bronchial thermoplasty in asthma: 2-year follow-up using optical coherence tomography. Eur Respir J. 2015;46(3):859–62.

    Article  CAS  PubMed  Google Scholar 

  63. De Boer J, Srinivas S, Malekafzali A, Chen Z, Nelson J. Imaging thermally damaged tissue by polarization sensitive optical coherence tomography. Opt Express. 1998;3(6):212–8. Epub 1998/09/14

    Article  PubMed  Google Scholar 

  64. Everett MJ, Schoenenberger K, Colston BW Jr, Da Silva LB. Birefringence characterization of biological tissue by use of optical coherence tomography. Opt Lett. 1998;23(3):228–30. Epub 2007/12/18

    Article  CAS  PubMed  Google Scholar 

  65. McDonough JE, Yuan R, Suzuki M, Seyednejad N, Elliott WM, Sanchez PG, et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011;365(17):1567–75. Epub 2011/10/28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Coxson HO, Mayo J, Lam S, Santyr G, Parraga G, Sin DD. New and current clinical imaging techniques to study chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2009;180(7):588–97. Epub 2009/07/18

    Article  PubMed  Google Scholar 

  67. Coxson HO, Lam S. Quantitative assessment of the airway wall using computed tomography and optical coherence tomography. Proc Am Thorac Soc. 2009;6(5):439–43. Epub 2009/08/19

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tam A, Churg A, Wright JL, Zhou S, Kirby M, Coxson HO, et al. Sex differences in airway remodeling in a mouse model of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2016;193(8):825–34.

    Article  CAS  PubMed  Google Scholar 

  69. Williamson JP, Armstrong JJ, McLaughlin RA, Noble PB, West AR, Becker S, et al. Measuring airway dimensions during bronchoscopy using anatomical optical coherence tomography. Eur Respir J. 2010;35(1):34–41. Epub 2009/06/23

    Article  CAS  PubMed  Google Scholar 

  70. Williamson JP, McLaughlin RA, Phillips MJ, Armstrong JJ, Becker S, Walsh JH, et al. Using optical coherence tomography to improve diagnostic and therapeutic bronchoscopy. Chest. 2009;136(1):272–6.

    Article  PubMed  Google Scholar 

  71. Haponik EF, Smith PL, Bohlman ME, Allen RP, Goldman SM, Bleecker ER. Computerized tomography in obstructive sleep apnea. Correlation of airway size with physiology during sleep and wakefulness. Am Rev Respir Dis. 1983;127(2):221–6. Epub 1983/02/01

    CAS  PubMed  Google Scholar 

  72. Armstrong JJ, Leigh MS, Sampson DD, Walsh JH, Hillman DR, Eastwood PR. Quantitative upper airway imaging with anatomic optical coherence tomography. Am J Respir Crit Care Med. 2006;173(2):226–33.

    Article  PubMed  Google Scholar 

  73. Walsh JH, Leigh MS, Paduch A, Maddison KJ, Philippe DL, Armstrong JJ, et al. Evaluation of pharyngeal shape and size using anatomical optical coherence tomography in individuals with and without obstructive sleep apnoea. J Sleep Res. 2008;17(2):230–8.

    Article  PubMed  Google Scholar 

  74. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–57. Epub 2000/09/23

    Article  CAS  PubMed  Google Scholar 

  75. McDonald DM. Angiogenesis and remodeling of airway vasculature in chronic inflammation. Am J Respir Crit Care Med. 2001;164(10 Pt 2):S39–45. Epub 2001/12/06

    Article  CAS  PubMed  Google Scholar 

  76. Jeffery PK. Structural and inflammatory changes in COPD: a comparison with asthma. Thorax. 1998;53(2):129–36. Epub 1998/06/13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Lam MD, FRCPC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Shaipanich, T., Pahlevaninezhad, H., Lam, S. (2018). Optical Coherence Tomography: A Review. In: Díaz-Jimenez, J., Rodriguez, A. (eds) Interventions in Pulmonary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-58036-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58036-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58035-7

  • Online ISBN: 978-3-319-58036-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics