Skip to main content

Endobronchial Prostheses

  • Chapter
  • First Online:
Interventions in Pulmonary Medicine

Abstract

Airway stents have been consistently shown to help patients suffering from central airway obstruction and esophagorespiratory fistulas, by improving airflow, quality of life, and survival. These prostheses, however, are foreign objects within the airways, and adverse events are expected. The incidence rate of these events depends on patient-related factors and on specific stent-tissue interactions. Stent insertion is generally reserved for patients for whom curative open surgical interventions are not feasible or contraindicated. Metallic stents should be avoided in histologically benign disease unless surgery or silicone stent placement is not possible. For malignant disease, stents are usually placed with a palliative intent and should be inserted to offer comfort without harming the terminally ill patient; therefore, they should be placed by operators able to manage intraoperative, short-term, and long-term complications after a careful analysis of expected benefits. Long-term stent-related complications are not uncommon and can occasionally be fatal. Since not all stents are equivalent in terms of biomechanics and stent-tissue interactions, manufactures should probably describe these properties including the resistance to angulation, expansile force, and mechanical failure, not only to assure restoration of airway patency after insertion but also to potentially predict immediate and long-term stent-related complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Central airway obstruction is defined in this chapter as any clinically significant narrowing of the airway from the subglottis to the lobar bronchi.

  2. 2.

    These include rigid or flexible bronchoscopic resection, laser, electrocautery, cryotherapy, photodynamic therapy, or brachytherapy and are described in detail in other chapters in this book.

  3. 3.

    Coexistent diseases: coronary heart disease, severe cardiac or respiratory insufficiency or poor general condition.

  4. 4.

    Granulation tissue formation at the proximal end of the T-tube has also been described, and it is believed that chronic airway irritation incites infection and promotes or aggravates granulation tissue formation.

  5. 5.

    In this study, patients with esophageal carcinoma involving the airway mostly required only stent placement without laser-assisted debulking, probably because the main problem was extrinsic compression.

  6. 6.

    An incidence proportion is defined as the number of cases with complications divided by the number of cases overall and is an appropriate measure for analyzing immediate perioperative complications [6].

  7. 7.

    It measures events per person-time at risk [6].

  8. 8.

    An electrical current in which the electron flow is in only one direction; galvanic currents cause fibroblasts proliferation resultant increase in collagen synthesis, property used for wound healing and also implicated in keloid formation.

  9. 9.

    Especially in patients with tumors who might have a nearly horizontal left main bronchus due to large subcarinal adenopathy.

  10. 10.

    In this regard, histologically benign CAO should be treated surgically or for nonsurgical candidates, with silicone stents whenever possible.

  11. 11.

    Other conditions include experienced bronchoscopist and team, experienced anesthesiologist, control of patient’s overall performance status, additional systemic or local therapy still possible, and control of comorbidities.

  12. 12.

    One way to assess the perfusion status of lung parenchyma distal to an airway obstruction is to attempt bypassing the stenosis using a high-resolution EBUS radial probe.

Abbreviations

6MWT:

Six-minute walk test

BAO:

Benign airway obstruction

BPF:

Bronchopleural fistula

CAO:

Central airway obstruction

CPAP:

Continuous positive airway pressure

CT:

Computed tomography

DATS:

Dynamic A-shaped tracheal stenosis

EBUS:

Endobronchial ultrasound

ECAC:

Expiratory central airway collapse

EDAC:

Excessive dynamic airway collapse

EPP:

Equal pressure point

ERF:

Esophagorespiratory fistulas

ETT:

Endotracheal tube

FLS:

Flow-limiting segment

HRQOL:

Health-related quality of life

IOS:

Impulse oscillometry

MAO:

Malignant airway obstruction

MRC:

Medical Research Council

P lat:

Lateral airway pressure

PL:

Intraluminal pressure

POTS:

Postoperative tracheal stenosis

Ppl:

Pleural pressure

QOL:

Quality of life

R:

Resistance

RP:

Relapsing polychondritis

RRP:

Recurrent respiratory papillomatosis

SEMS:

Self-expandable metallic stents

TBM:

Tracheobronchomalacia

TLC:

Total lung capacity

References

  1. Zhu GH, Ng AH, Venkatraman SS, et al. A novel bioabsorbable drug-eluting tracheal stent. Laryngoscope. 2011;121:2234–9.

    Article  CAS  PubMed  Google Scholar 

  2. Korpela A, Aarnio P, Sariola H, et al. Comparison of tissue reactions in the tracheal mucosa surrounding a bioabsorbable and silicone airway stents. Ann Thorac Surg. 1998;66:1772–6.

    Article  CAS  PubMed  Google Scholar 

  3. Saito Y, Minami K, Kobayashi M, et al. New tubular bioabsorbable knitted airway stent: biocompatibility and mechanical strength. J Thorac Cardiovasc Surg. 2002;123:161–7.

    Article  PubMed  Google Scholar 

  4. Robey TC, Valimaa T, Murphy HS, et al. Use of internal bioabsorbable PLGA “finger-type” stents in a rabbit tracheal reconstruction model. Arch Otolaryngol Head Neck Surg. 2000;125:985–91.

    Article  Google Scholar 

  5. Vondrys D, Elliott MJ, McLaren CA, Noctor C, Roebuck DJ. First experience with biodegradable airway stents in children. Ann Thorac Surg. 2011;92:1870–4.

    Article  PubMed  Google Scholar 

  6. Antón-Pacheco JL, Luna C, García E, López M, Morante R, Tordable C, Palacios A, de Miguel M, Benavent I, Gómez A. Initial experience with a new biodegradable airway stent in children: is this the stent we were waiting for? Pediatr Pulmonol. 2016;51(6):607–12.

    Article  PubMed  Google Scholar 

  7. Chao YK, Liu KS, Wang YC, Huang YL, Liu SJ. Biodegradable cisplatin-eluting tracheal stent for malignant airway obstruction: in vivo and in vitro studies. Chest. 2013;144(1):193–9.

    Article  PubMed  Google Scholar 

  8. Stehlik L, Hytych V, Letackova J, Kubena P, Vasakova M. Biodegradable polydioxanone stents in the treatment of adult patients with tracheal narrowing. BMC Pulm Med. 2015;15:164.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ost DE, Shah AM, Lei X, et al. Respiratory infections increase the risk of granulation tissue formation following airway stenting in patients with malignant airway obstruction. Chest. 2012;141:1473–81.

    Article  PubMed  Google Scholar 

  10. Bolliger CT. Multimodalities treatment of advanced pulmonary malignancies in “interventional bronchoscopy”. Prog Respir Res. 2000;30:187–96.

    Article  Google Scholar 

  11. Murgu SD, Colt HG. Complications of silicone stent insertion in patients with expiratory central airway collapse. Ann Thorac Surg. 2007;84:1870–7.

    Article  PubMed  Google Scholar 

  12. Ernst A, Majid A, Feller-Kopman D, et al. Airway stabilization with silicone stents for treating adult tracheobronchomalacia: a prospective observational study. Chest. 2007;132:609–16.

    Article  PubMed  Google Scholar 

  13. Bondaryev A, Makris D, Breen DP, et al. Airway stenting for severe endobronchial papillomatosis. Respiration. 2009;77:455–8.

    Article  PubMed  Google Scholar 

  14. Terrier B, Dechartres A, et al. Granulomatosis with polyangiitis: endoscopic management of tracheobronchial stenosis: results from a multicentre experience. Rheumatology. 2015;54:1852–7.

    Article  CAS  PubMed  Google Scholar 

  15. Plojoux J, Laroumagne S, Vandemoortele T, Astoul PJ, Thomas PA, Dutau H. Management of benign dynamic “a-shape” tracheal stenosis: a retrospective study of 60 patients. Ann Thorac Surg. 2015;99:447–54.

    Article  PubMed  Google Scholar 

  16. Mehta AC, Lee FY, Cordasco EM, et al. Concentric tracheal and subglottic stenosis. Management using the Nd-YAG laser for mucosal sparing followed by gentle dilatation. Chest. 1993;104:673–7.

    Article  CAS  PubMed  Google Scholar 

  17. Dalar L, Karasulu L, Abul Y, et al. Bronchoscopic treatment in the management of benign tracheal stenosis: choices for simple and complex tracheal stenosis. Ann Thorac Surg. 2016;101:1310–7.

    Article  PubMed  Google Scholar 

  18. Brichet A, Verkindre C, Dupont J, et al. Multidisciplinary approach to management of postintubation tracheal stenoses. Eur Respir J. 1999;13:888–93.

    Article  CAS  PubMed  Google Scholar 

  19. Galluccio G, Lucantoni G, Battistoni P, et al. Interventional endoscopy in the management of benign tracheal stenoses: definitive treatment at long-term follow-up. Eur J Cardiothorac Surg. 2009;35:429–33; discussion 933–4.

    Google Scholar 

  20. Cavaliere S, Bezzi M, Toninelli C, et al. Management of post-intubation tracheal stenoses using the endoscopic approach. Monaldi Arch Chest Dis. 2007;67(2):73–80.

    CAS  PubMed  Google Scholar 

  21. Nouraei SA, Ghufoor K, Patel A, et al. Outcome of endoscopic treatment of adult postintubation tracheal stenosis. Laryngoscope. 2007;117:1073–9.

    Article  PubMed  Google Scholar 

  22. Cooper JD, Grillo HC. The evolution of tracheal injury due to ventilatory assistance through cuffed tubes: a pathologic study. Ann Surg. 1969;169:334–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Murgu SD, Colt HG, Mukai D, et al. Multimodal imaging guidance for laser ablation in tracheal stenosis. Laryngoscope. 2010;120:1840–6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Patelli M, Gasparini S. Post-intubation tracheal stenoses: what is the curative yield of the interventional pulmonology procedures? Monaldi Arch Chest Dis. 2007;67:71–2.

    CAS  PubMed  Google Scholar 

  25. Zias N, Chroneou A, Tabba MK, et al. Post tracheostomy and post intubation tracheal stenosis: report of 31 cases and review of the literature. BMC Pulm Med. 2008;8:18.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Martinez-Ballarin JI, Diaz-Jimenez JP, Castro MJ, et al. Silicone stents in the management of benign tracheobronchial stenoses. tolerance and early results in 63 patients. Chest. 1996;109:626–9.

    Article  CAS  PubMed  Google Scholar 

  27. Wain JC Jr. Postintubation tracheal stenosis. Semin Thorac Cardiovasc Surg. 2009;21:284–9.

    Article  PubMed  Google Scholar 

  28. Liu HC, Lee KS, Huang CJ, et al. Silicone T-tube for complex laryngotracheal problems. Eur J Cardiothorac Surg. 2002;21:326–30.

    Article  PubMed  Google Scholar 

  29. U.S. Food and Drug Administration. Metallic tracheal stents in patients with benign airway disorders. 2005. http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm153009.htm; Accessed 7 Aug 2016.

  30. Gildea TR, Murthy SC, Sahoo D, et al. Performance of a self-expanding silicone stent in palliation of benign airway conditions. Chest. 2006;130:1419–23.

    Article  CAS  PubMed  Google Scholar 

  31. Jog M, Anderson DE, McGarry GW. Polyflex stent: is it radiopaque enough? J Laryngol Otol. 2003;117:83–4.

    CAS  PubMed  Google Scholar 

  32. Jeong BH, Um SW, Suh GY, et al. Results of interventional bronchoscopy in the management of postoperative tracheobronchial stenosis. J Thorac Cardiovasc Surg. 2012;144:217–22.

    Article  PubMed  Google Scholar 

  33. Ost DE, Ernst A, Grosu HB, et al. Therapeutic bronchoscopy for malignant central airway obstruction: success rates and impact on dyspnea and quality of life. Chest. 2015;147(5):1282–98.

    Article  PubMed  Google Scholar 

  34. Stanopoulos IT, Beamis JF Jr, Martinez FJ, et al. Laser bronchoscopy in respiratory failure from malignant airway obstruction. Crit Care Med. 1993;21:386–91.

    Article  CAS  PubMed  Google Scholar 

  35. Lo CP, Hsu AA, Eng P. Endobronchial stenting in patients requiring mechanical ventilation for major airway obstruction. Ann Acad Med Singap. 2000;29:66–70.

    CAS  PubMed  Google Scholar 

  36. Jeon K, Kim H, Yu CM, et al. Rigid bronchoscopic intervention in patients with respiratory failure caused by malignant central airway obstruction. J Thorac Oncol. 2006;1:319–23.

    Article  PubMed  Google Scholar 

  37. Oviatt PL, Stather DR, Michaud G, Maceachern P, Tremblay A. Exercise capacity, lung function, and quality of life after interventional bronchoscopy. J Thorac Oncol. 2011;6:38–42.

    Article  PubMed  Google Scholar 

  38. Razi SS, Lebovics RS, Schwartz G, et al. Timely airway stenting improves survival in patients with malignant central airway obstruction. Ann Thorac Surg. 2010;90:1088–93.

    Article  PubMed  Google Scholar 

  39. Okiror L, Jiang L, Oswald N, et al. Bronchoscopic management of patients with symptomatic airway stenosis and prognostic factors for survival. Ann Thorac Surg. 2015;99:1725–30.

    Article  PubMed  Google Scholar 

  40. Lemaire A, Burfeind WR, Toloza E, et al. Outcomes of tracheobronchial stents in patients with malignant airway disease. Ann Thorac Surg. 2005;80:434–8.

    Article  PubMed  Google Scholar 

  41. Furukawa K, Ishida J, Yamaguchi G, et al. The role of airway stent placement in the management of tracheobronchial stenosis caused by inoperable advanced lung cancer. Surg Today. 2010;40:315–20.

    Article  PubMed  Google Scholar 

  42. Guidelines for intensive care unit admission, discharge, and triage. Task Force of the American College of Critical Care Medicine, Society of Critical Care Medicine. Crit Care Med. 1999;27:633–8.

    Google Scholar 

  43. Murgu S, Langer S, Colt H. Bronchoscopic intervention obviates the need for continued mechanical ventilation in patients with airway obstruction and respiratory failure from inoperable non-small-cell lung cancer. Respiration. 2012;84:55–61.

    Article  PubMed  Google Scholar 

  44. Deschamps C, Bernard A, Nichols FC 3rd, et al. Empyema and bronchopleural fistula after pneumonectomy: factors affecting incidence. Ann Thorac Surg. 2001;72:243–7.

    Article  CAS  PubMed  Google Scholar 

  45. Lois M, Noppen M. Bronchopleural fistulas. An overview of the problem with a special focus on endoscopic management. Chest. 2005;128:3955–65.

    Article  PubMed  Google Scholar 

  46. Han X, Wu G, Li Y, et al. A novel approach: treatment of bronchial stump fistula with a plugged, bullet-shaped, angled stent. Ann Thorac Surg. 2006;81:1867–71.

    Article  PubMed  Google Scholar 

  47. Shen KR, Allen MS, Cassivi SD, et al. Surgical management of acquired nonmalignant tracheoesophageal and bronchoesophageal fistulae. Ann Thorac Surg. 2010;90:914–9.

    Article  PubMed  Google Scholar 

  48. Wang H, Tao M, Zhang N, et al. Airway covered metallic stent based on different fistula location and size in malignant tracheoesophageal fistula. Am J Med Sci. 2015;5:364–8.

    Article  Google Scholar 

  49. Freitag L, Ernst A, Unger M, Kovitz K, Marquette CH. A proposed classification system of central airway stenosis. Eur Respir J. 2007;30:7–12.

    Article  CAS  PubMed  Google Scholar 

  50. Rodriguez AN, Diaz-Jimenez JP. Malignant respiratory-digestive fistulas. Curr Opin Pulm Med. 2010;16:329–33.

    Article  PubMed  Google Scholar 

  51. Diaz-Jimenez P. New cufflink-shaped silicone prosthesis for the palliation of malignant tracheobronchial-esophageal fistula. J Bronchol. 2005;12:207–9.

    Article  Google Scholar 

  52. Dumon JF, Dumon MC. Dumon-Novatech Y8-stents: a four-year experience with 50 tracheobronchial tumors involving the carina. J Bronchol. 2000;7:26–32.

    Article  Google Scholar 

  53. Burt M, Diehl W, Martini N, et al. Malignant esophagorespiratory fistula: management options and survival. Ann Thorac Surg. 1991;52:1222–9.

    Article  CAS  PubMed  Google Scholar 

  54. Herth FJ, Peter S, Baty F, Eberhardt R, Leuppi JD, Chhajed PN. Combined airway and oesophageal stenting in malignant airway-oesophageal fistulas: a prospective study. Eur Respir J. 2010;36:1370–4.

    Article  CAS  PubMed  Google Scholar 

  55. Murgu SD, Colt HG. Description of a multidimensional classification system for patients with expiratory central airway collapse. Respirology. 2007;12:543–50.

    Article  PubMed  Google Scholar 

  56. Boiselle PM, O'Donnell CR, Bankier AA, et al. Tracheal collapsibility in healthy volunteers during forced expiration: assessment with multidetector CT. Radiology. 2009;252:255–62.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sarodia BD, Dasgupta A, Mehta AC. Management of airway manifestations of relapsing polychondritis: case reports and review of literature. Chest. 1999;116:1669–75.

    Article  CAS  PubMed  Google Scholar 

  58. Miyazawa T, Nishine H, Handa H, et al. Migration of the choke point in relapsing polychondritis after stenting. Chest. 2009;136:81S.

    Article  Google Scholar 

  59. Adliff M, Ngato D, Keshavjee S, et al. Treatment of diffuse tracheomalacia secondary to relapsing polychondritis with continuous positive airway pressure. Chest. 1997;112:1701–4.

    Article  CAS  PubMed  Google Scholar 

  60. Nouraei SA, Nouraei SM, Randhawa PS, et al. Sensitivity and responsiveness of the Medical Research Council dyspnoea scale to the presence and treatment of adult laryngotracheal stenosis. Clin Otolaryngol. 2008;33:575–80.

    Article  CAS  PubMed  Google Scholar 

  61. Myer CM, O’Connor DM, Cotton RT. Proposed grading system for subglottic stenosis based on endotracheal tube sizes. Ann Otol Rhinol Laryngol. 1994;103:319–23.

    Article  PubMed  Google Scholar 

  62. Brouns M, Jayaraju ST, Lacor C, et al. Tracheal stenosis: a flow dynamics study. J Appl Physiol. 2007;102:1178–84.

    Article  PubMed  Google Scholar 

  63. Mead J, Turner JM, Macklem PT, Little JB. Significance of the relationship between lung recoil and maximum expiratory flow. J Appl Physiol. 1967;22:95–108.

    Article  CAS  PubMed  Google Scholar 

  64. Smaldone GC, Smith PL. Location of flow-limiting segments via airway catheters near residual volume in humans. J Appl Physiol. 1985;59:502–8.

    Article  CAS  PubMed  Google Scholar 

  65. Baram D, Smaldone G. Tracheal collapse versus tracheobronchomalacia: normal function versus disease. Am J Respir Crit Care Med. 2006;174:724.

    Article  PubMed  Google Scholar 

  66. Boiselle PM, Litmanovich DE, Michaud G, et al. Dynamic expiratory tracheal collapse in morbidly obese COPD patients. COPD. 2013;10(5):604–10.

    Article  PubMed  Google Scholar 

  67. Behazin N, Jones SB, Cohen RI, Loring SH. Respiratory restriction and elevated pleural and esophageal pressures in morbid obesity. J Appl Physiol (1985). 2010;108(1):212–8.

    Article  Google Scholar 

  68. O’Donnell CR, Bankier AA, O’Donnell DH, Loring SH, Boiselle PM. Static end-expiratory and dynamic forced expiratory tracheal collapse in COPD. Clin Radiol. 2014;69(4):357–62.

    Article  PubMed  Google Scholar 

  69. Bhatt SP, Terry NL, Nath H, et al. Association between expiratory central airway collapse and respiratory outcomes among smokers. JAMA. 2016;315(5):498–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hogg JC, Macklem PT, Thurlbeck WM. Site and nature of airway obstruction in chronic obstructive lung disease. N Engl J Med. 1968;278:1355–60.

    Article  CAS  PubMed  Google Scholar 

  71. Pornsuriyasak P, Ploysongsang Y. Impulse oscillometry system in diagnosis of central airway obstruction in adults: comparison with spirometry and body plethysmography. Chest. 2009;136:123S.

    Article  Google Scholar 

  72. Murgu SD, Colt HG. Tracheobronchomalacia and excessive dynamic airway collapse. Respirology. 2006;11:388–406.

    Article  PubMed  Google Scholar 

  73. Handa H, Miyazawa T, Murgu SD, et al. Novel multimodality imaging and physiologic assessments clarify choke-point physiology and airway wall structure in expiratory central airway collapse. Respir Care. 2012;57(4):634–41.

    PubMed  Google Scholar 

  74. Nishine H, Hiramoto T, Kida H, et al. Assessing the site of maximum obstruction in the trachea using lateral pressure measurement during bronchoscopy. Am J Respir Crit Care Med. 2012;185(1):24–33.

    Article  PubMed  Google Scholar 

  75. Witt C, Dinges S, Schmidt B, Ewert R, Budach V, Baumann G. Temporary tracheobronchial stenting in malignant stenoses. Eur J Cancer. 1997;33:204–8.

    Article  CAS  PubMed  Google Scholar 

  76. Chan AC, Shin FG, Lam YH, et al. A comparison study on physical properties of self-expandable esophageal metal stents. Gastrointest Endosc. 1999;49(4 Pt 1):462–5.

    Article  CAS  PubMed  Google Scholar 

  77. Freitag L, et al. Mechanical properties of airway stents. J Bronchol. 1995;2:270–8.

    Article  Google Scholar 

  78. Chhajed PN, Somandin S, Baty F, et al. Therapeutic bronchoscopy for malignant airway stenoses: choice of modality and survival. J Cancer Res Ther. 2010;6:204–9.

    Article  PubMed  Google Scholar 

  79. Hu HC, Liu YH, Wu YC, et al. Granulation tissue formation following Dumon airway stenting: the influence of stent diameter. Thorac Cardiovasc Surg. 2011;59:163–8.

    Article  PubMed  Google Scholar 

  80. Saad CP, Murthy S, Krizmanich G, Mehta AC. Self expandable metallic airway stents and flexible bronchoscopy: long-term outcomes analysis. Chest. 2003;124:1993–9.

    Article  PubMed  Google Scholar 

  81. Ost DE, Ernst A, Grosu HB, et al. Complications following therapeutic bronchoscopy for malignant central airway obstruction: results of the AQuIRE Registry. Chest. 2015;148(2):450–71.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Agrafiotis M, Siempos II, Falagas ME. Infections related to airway stenting: a systematic review. Respiration. 2009;78:69–74.

    Article  PubMed  Google Scholar 

  83. Ernst A, Feller-Kopman D, Becker HD, et al. Central airway obstruction. Am J Respir Crit Care Med. 2004;169:1278–97.

    Article  PubMed  Google Scholar 

  84. Chung FT, Lin SM, Chou CL, et al. Factors leading to obstructive granulation tissue formation after ultraflex stenting in benign tracheal narrowing. Thorac Cardiovasc Surg. 2010;58:102–7.

    Article  PubMed  Google Scholar 

  85. Freitag L. Airway stents. In: Strausz J, Bolliger CT, editors. Interventional pulmonology. Sheffield: European Respiratory Society; 2010. p. 190–217.

    Chapter  Google Scholar 

  86. Dalupang JJ, Shanks TG, Colt HG. Nd-YAG laser damage to metal and silicone endobronchial stents: delineation of margins of safety using an in vitro experimental model. Chest. 2001;120:934–40.

    Article  CAS  PubMed  Google Scholar 

  87. Alazemi S, Lunn W, Majid A, et al. Outcomes, health-care resources use, and costs of endoscopic removal of metallic airway stents. Chest. 2010;138(2):350–6.

    Article  PubMed  Google Scholar 

  88. Matt BH, Myer CM 3rd, Harrison CJ, et al. Tracheal granulation tissue. A study of bacteriology. Arch Otolaryngol Head Neck Surg. 1991;117:538–41.

    Article  CAS  PubMed  Google Scholar 

  89. Lunn W, Feller-Kopman D, Wahidi M, et al. Endoscopic removal of metallic airway stents. Chest. 2005;127:2106–12.

    Article  PubMed  Google Scholar 

  90. Matsui H, Hiroma T, Hasegawa H, Ogiso Y. Decreased granulomatous reaction by polyurethane-coated stent in the trachea. Pediatr Int. 2014;56(6):817–21.

    Article  PubMed  Google Scholar 

  91. Bolot G, Poupart M, Pignat JC, et al. Self-expanding metal stents for the management of bronchial stenosis and bronchomalacia after lung transplantation. Laryngoscope. 1998;108:1230–3.

    Article  CAS  PubMed  Google Scholar 

  92. Gilabert-Porres J, Martí S, Calatayud L, et al. Design of a nanostructured active surface against gram-positive and gram-negative bacteria through plasma activation and in situ silver reduction. ACS Appl Mater Interfaces. 2016;8(1):64–73.

    Article  CAS  PubMed  Google Scholar 

  93. Gaissert HA, Grillo HC, Wright CD, et al. Complication of benign tracheobronchial strictures by self-expanding metal stents. J Thorac Cardiovasc Surg. 2003;126:744–7.

    Article  PubMed  Google Scholar 

  94. Reddy SP, Marks JE. Total atelectasis of the lung secondary to malignant airway obstruction. Response to radiation therapy. Am J Clin Oncol. 1990;13:394–400.

    Article  CAS  PubMed  Google Scholar 

  95. Verma A, Park HY, Lim SY, et al. Posttuberculosis tracheobronchial stenosis: use of CT to optimize the time of silicone stent removal. Radiology. 2012;263(2):562–8.

    Article  PubMed  Google Scholar 

  96. Matsuo T, Colt HG. Evidence against routine scheduling of surveillance bronchoscopy after stent insertion. Chest. 2000;118:1455–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Septimiu Dan Murgu MD, FCCP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Murgu, S.D., Stoy, S.P. (2018). Endobronchial Prostheses. In: Díaz-Jimenez, J., Rodriguez, A. (eds) Interventions in Pulmonary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-58036-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58036-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58035-7

  • Online ISBN: 978-3-319-58036-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics