Advertisement

Update in Pediatric Oncology: Section B—Solid Tumors of Childhood

  • Allison F. O’Neill
Chapter

Abstract

The care of pediatric patients with solid tumors is complex given the tissues and organs affected by disease, the multidisciplinary nature to clinical decision-making, treatment toxicities, and the complex medical and psychosocial care required during and in the aftermath of treatment. Therapeutic regimens are selected on the basis of patient risk-stratification, which for many tumors is tailored to account for disease histology, extent of spread, and in some cases molecular profile. Treatment considerations focus on the primary tumor (i.e. local control) as well as metastatic or microscopic circulating disease (i.e. systemic therapy). Local control can consist of surgery, radiotherapy, or a combination of the two. “Neoadjuvant” treatment is the term given to systemic agents administered prior to surgery with the term “adjuvant” assigned to treatment given post-operatively. Over the last decade, goals of therapy have evolved to maintain excellent outcomes for patients with low-risk disease, while reducing overall therapy, minimizing toxicity, and improving outcomes for patients with high-risk disease through treatment intensification. In the era of personalized medicine and genomic tumor profiling, our understanding of the molecular drivers of disease as well as targeted approaches to therapy continues to improve. The goals of this chapter are to focus on the epidemiology, pathophysiology, presenting symptoms, work-up, and standard treatment for the most common extracranial solid tumors (focusing predominantly on the North American, Children’s Oncology Group approach) while highlighting recent advances in therapy and overall outcomes.

Keywords

Solid tumors Childhood Treatment Advances 

References

  1. Abramson DH, et al. Familial retinoblastoma: where and when? Acta Ophthalmol Scand. 1998;76(3):334–8.PubMedCrossRefGoogle Scholar
  2. Acord M, Shaikh R. Predictors of diagnostic success in image-guided pediatric soft-tissue biopsies. Pediatr Radiol. 2015;45(10):1529–34.PubMedCrossRefGoogle Scholar
  3. Alcorn KM, et al. Sentinel lymph node biopsy in pediatric soft tissue sarcoma patients: utility and concordance with imaging. J Pediatr Surg. 2013;48(9):1903–6.PubMedCrossRefGoogle Scholar
  4. Allolio B, Fassnacht M. Clinical review: adrenocortical carcinoma: clinical update. J Clin Endocrinol Metab. 2006;91(6):2027–37.PubMedCrossRefGoogle Scholar
  5. Andreou D, et al. The influence of tumor- and treatment-related factors on the development of local recurrence in osteosarcoma after adequate surgery. An analysis of 1355 patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. Ann Oncol. 2011;22(5):1228–35.PubMedCrossRefGoogle Scholar
  6. Andreou D, et al. Sentinel node biopsy in soft tissue sarcoma subtypes with a high propensity for regional lymphatic spread—results of a large prospective trial. Ann Oncol. 2013;24(5):1400–5.PubMedCrossRefGoogle Scholar
  7. Anninga JK, et al. Chemotherapeutic adjuvant treatment for osteosarcoma: where do we stand? Eur J Cancer. 2011;47(16):2431–45.PubMedCrossRefGoogle Scholar
  8. Aronson DC, et al. Predictive value of the pretreatment extent of disease system in hepatoblastoma: results from the International Society of Pediatric Oncology Liver Tumor Study Group SIOPEL-1 study. J Clin Oncol. 2005;23(6):1245–52.PubMedCrossRefGoogle Scholar
  9. Asayama Y, et al. Heterogeneity of non-cancerous liver parenchyma on gadoxetic acid-enhanced MRI: an imaging biomarker for hepatocellular carcinoma development in chronic liver disease. Clin Radiol. 2016;71(5):432–7.PubMedCrossRefGoogle Scholar
  10. Bacci G, et al. Prognostic factors in nonmetastatic Ewing’s sarcoma of bone treated with adjuvant chemotherapy: analysis of 359 patients at the Istituto Ortopedico Rizzoli. J Clin Oncol. 2000a;18(1):4–11.PubMedCrossRefGoogle Scholar
  11. Bacci G, et al. Long-term outcome for patients with nonmetastatic osteosarcoma of the extremity treated at the istituto ortopedico rizzoli according to the istituto ortopedico rizzoli/osteosarcoma-2 protocol: an updated report. J Clin Oncol. 2000b;18(24):4016–27.PubMedCrossRefGoogle Scholar
  12. Baker DL, et al. Outcome after reduced chemotherapy for intermediate-risk neuroblastoma. N Engl J Med. 2010;363(14):1313–23.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bardeesy N, et al. Anaplastic Wilms' tumour, a subtype displaying poor prognosis, harbours p53 gene mutations. Nat Genet. 1994;7(1):91–7.PubMedCrossRefGoogle Scholar
  14. Barr FG, et al. Examination of gene fusion status in archival samples of alveolar rhabdomyosarcoma entered on the intergroup rhabdomyosarcoma study-III trial: a report from the Children's Oncology Group. J Mol Diagn. 2006;8(2):202–8.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Beckwith JB. Precursor lesions of Wilms tumor: clinical and biological implications. Med Pediatr Oncol. 1993;21(3):158–68.PubMedCrossRefGoogle Scholar
  16. Bhadri VA, et al. Hepatocellular carcinoma in children with Alagille syndrome. J Pediatr Gastroenterol Nutr. 2005;41(5):676–8.PubMedCrossRefGoogle Scholar
  17. Biegel JA, et al. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 1999;59(1):74–9.PubMedGoogle Scholar
  18. Blohm ME, et al. Alpha 1-fetoprotein (AFP) reference values in infants up to 2 years of age. Pediatr Hematol Oncol. 1998;15(2):135–42.PubMedCrossRefGoogle Scholar
  19. Bohdiewicz PJ, Gallegos E, Fink-Bennett D. Raccoon eyes and the MIBG super scan: scintigraphic signs of neuroblastoma in a case of suspected child abuse. Pediatr Radiol. 1995;25(Suppl 1):S90–2.PubMedGoogle Scholar
  20. Bokemeyer C, et al. Extragonadal germ cell tumors of the mediastinum and retroperitoneum: results from an international analysis. J Clin Oncol. 2002;20(7):1864–73.PubMedCrossRefGoogle Scholar
  21. Bourdeaut F, et al. VIP hypersecretion as primary or secondary syndrome in neuroblastoma: a retrospective study by the Societe Francaise des Cancers de l'Enfant (SFCE). Pediatr Blood Cancer. 2009;52(5):585–90.PubMedCrossRefGoogle Scholar
  22. Breneman JC, et al. Prognostic factors and clinical outcomes in children and adolescents with metastatic rhabdomyosarcoma—a report from the intergroup rhabdomyosarcoma study IV. J Clin Oncol. 2003;21(1):78–84.PubMedCrossRefGoogle Scholar
  23. Bresler SC, et al. ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer Cell. 2014;26(5):682–94.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Breslow NE, et al. End stage renal disease in patients with Wilms tumor: results from the National Wilms Tumor Study Group and the United States Renal Data System. J Urol. 2005;174(5):1972–5.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Brodeur GM, et al. International criteria for diagnosis, staging, and response to treatment in patients with neuroblastoma. J Clin Oncol. 1988;6(12):1874–81.PubMedCrossRefGoogle Scholar
  26. Brodeur GM, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11(8):1466–77.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Brown J, et al. Pretreatment prognostic factors for children with hepatoblastoma—results from the International Society of Paediatric Oncology (SIOP) study SIOPEL 1. Eur J Cancer. 2000;36(11):1418–25.PubMedCrossRefGoogle Scholar
  28. Bruder E, et al. Morphologic and molecular characterization of renal cell carcinoma in children and young adults. Am J Surg Pathol. 2004;28(9):1117–32.PubMedCrossRefGoogle Scholar
  29. Byun BH, et al. Comparison of (18)F-FDG PET/CT and (99 m)Tc-MDP bone scintigraphy for detection of bone metastasis in osteosarcoma. Skelet Radiol. 2013;42(12):1673–81.CrossRefGoogle Scholar
  30. Callaghan MU, Wong TE, Federici AB. Treatment of acquired von Willebrand syndrome in childhood. Blood. 2013;122(12):2019–22.PubMedCrossRefGoogle Scholar
  31. Cash T, et al. Comparison of clinical features and outcomes in patients with extraskeletal versus skeletal localized Ewing sarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2016;63(10):1771–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chen X, et al. Targeting oxidative stress in embryonal rhabdomyosarcoma. Cancer Cell. 2013;24(6):710–24.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chen X, et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 2014;7(1):104–12.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cohn SL, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009;27(2):289–97.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Crist W, et al. The third intergroup rhabdomyosarcoma study. J Clin Oncol. 1995;13(3):610–30.PubMedCrossRefGoogle Scholar
  36. Crist WM, et al. Intergroup rhabdomyosarcoma study-IV: results for patients with nonmetastatic disease. J Clin Oncol. 2001;19(12):3091–102.PubMedCrossRefGoogle Scholar
  37. Crompton BD, et al. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov. 2014;4(11):1326–41.PubMedCrossRefGoogle Scholar
  38. Cushing B, et al. Randomized comparison of combination chemotherapy with etoposide, bleomycin, and either high-dose or standard-dose cisplatin in children and adolescents with high-risk malignant germ cell tumors: a pediatric intergroup study—Pediatric Oncology Group 9049 and Children's Cancer Group 8882. J Clin Oncol. 2004;22(13):2691–700.PubMedCrossRefGoogle Scholar
  39. Czauderna P, et al. Multicenter retrospective analysis of various primary pediatric malignant hepatic tumors—management in a series of 47 Polish patients (1985–1995). Eur J Pediatr Surg. 2001;11(2):82–5.PubMedCrossRefGoogle Scholar
  40. Czauderna P, et al. Hepatocellular carcinoma in children: results of the first prospective study of the International Society of Pediatric Oncology group. J Clin Oncol. 2002;20(12):2798–804.PubMedCrossRefGoogle Scholar
  41. Czauderna P, et al. The Children's Hepatic tumors International Collaboration (CHIC): novel global rare tumor database yields new prognostic factors in hepatoblastoma and becomes a research model. Eur J Cancer. 2016;52:92–101.PubMedCrossRefGoogle Scholar
  42. Dark GG, et al. Surveillance policy for stage I ovarian germ cell tumors. J Clin Oncol. 1997;15(2):620–4.PubMedCrossRefGoogle Scholar
  43. De Bernardi B, et al. Excellent outcome with reduced treatment for infants with disseminated neuroblastoma without MYCN gene amplification. J Clin Oncol. 2009;27(7):1034–40.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Dehner LP. Gonadal and extragonadal germ cell neoplasia of childhood. Hum Pathol. 1983;14(6):493–511.PubMedCrossRefGoogle Scholar
  45. Dexeus FH, et al. Genetic abnormalities in men with germ cell tumors. J Urol. 1988;140(1):80–4.PubMedCrossRefGoogle Scholar
  46. Di Giannatale A, et al. Primary cutaneous and subcutaneous Ewing sarcoma. Pediatr Blood Cancer. 2015;62(9):1555–61.PubMedCrossRefGoogle Scholar
  47. Diller L, et al. Germline p53 mutations are frequently detected in young children with rhabdomyosarcoma. J Clin Invest. 1995;95(4):1606–11.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Dillon P, et al. A prospective study of nonrhabdomyosarcoma soft tissue sarcomas in the pediatric age group. J Pediatr Surg. 1992;27(2):241–4. discussion 244–5PubMedCrossRefGoogle Scholar
  49. Dome JS, et al. Treatment of anaplastic histology Wilms' tumor: results from the fifth National Wilms' Tumor Study. J Clin Oncol. 2006;24(15):2352–8.PubMedCrossRefGoogle Scholar
  50. Donaldson SS. Ewing sarcoma: radiation dose and target volume. Pediatr Blood Cancer. 2004;42(5):471–6.PubMedCrossRefGoogle Scholar
  51. Donati D, et al. Osteosarcoma of the pelvis. Eur J Surg Oncol. 2004;30(3):332–40.PubMedCrossRefGoogle Scholar
  52. Douglass EC, et al. Cisplatin, vincristine, and fluorouracil therapy for hepatoblastoma: a Pediatric Oncology Group study. J Clin Oncol. 1993;11(1):96–9.PubMedCrossRefGoogle Scholar
  53. DuBois SG, et al. Comparative evaluation of local control strategies in localized Ewing sarcoma of bone: a report from the Children's Oncology Group. Cancer. 2015;121(3):467–75.PubMedCrossRefGoogle Scholar
  54. Eaton KW, et al. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer. 2011;56(1):7–15.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Eichenmuller M, et al. The genomic landscape of hepatoblastoma and their progenies with HCC-like features. J Hepatol. 2014;61(6):1312–20.PubMedCrossRefGoogle Scholar
  56. El-Khoueiry AB, Melero I, Crocenzi TS, et al. Phase I/II safety and antitumor activity of nivolumab in patients with advanced hepatocellular carcinoma (HCC): CA209-040. Abstract. J Clin Oncol. 2015;33:PMID: 28147715.CrossRefGoogle Scholar
  57. Eren E, et al. A rare cause of precocious puberty: hepatoblastoma. J Clin Res Pediatr Endocrinol. 2009;1(6):281–3.PubMedCrossRefGoogle Scholar
  58. Federico SM, et al. Comparison of PET-CT and conventional imaging in staging pediatric rhabdomyosarcoma. Pediatr Blood Cancer. 2013;60(7):1128–34.PubMedCrossRefGoogle Scholar
  59. Ferrari S, et al. Predictive factors of disease-free survival for non-metastatic osteosarcoma of the extremity: an analysis of 300 patients treated at the Rizzoli Institute. Ann Oncol. 2001;12(8):1145–50.PubMedCrossRefGoogle Scholar
  60. Ferrari A, et al. Comparison of the prognostic value of assessing tumor diameter versus tumor volume at diagnosis or in response to initial chemotherapy in rhabdomyosarcoma. J Clin Oncol. 2010;28(8):1322–8.PubMedCrossRefGoogle Scholar
  61. Frazier AL, et al. Revised risk classification for pediatric extracranial germ cell tumors based on 25 years of clinical trial data from the United Kingdom and United States. J Clin Oncol. 2015;33(2):195–201.PubMedCrossRefGoogle Scholar
  62. Fuchs J, et al. Pretreatment prognostic factors and treatment results in children with hepatoblastoma: a report from the German Cooperative Pediatric Liver Tumor Study HB 94. Cancer. 2002;95(1):172–82.PubMedCrossRefGoogle Scholar
  63. Geller JI, Dome JS. Local lymph node involvement does not predict poor outcome in pediatric renal cell carcinoma. Cancer. 2004;101(7):1575–83.PubMedCrossRefGoogle Scholar
  64. Geller JI, et al. Characterization of adolescent and pediatric renal cell carcinoma: A report from the Children's Oncology Group study AREN03B2. Cancer. 2015;121(14):2457–64.PubMedPubMedCentralCrossRefGoogle Scholar
  65. German J. Bloom's syndrome. XX. The first 100 cancers. Cancer Genet Cytogenet. 1997;93(1):100–6.PubMedCrossRefGoogle Scholar
  66. Gobel U, et al. Teratomas in infancy and childhood. Med Pediatr Oncol. 1998;31(1):8–15.PubMedCrossRefGoogle Scholar
  67. Gobin YP, et al. Intra-arterial chemotherapy for the management of retinoblastoma: four-year experience. Arch Ophthalmol. 2011;129(6):732–7.PubMedCrossRefGoogle Scholar
  68. Grant FD, Drubach LA, Treves ST. (18)F-fluorodeoxyglucose PET and PET/CT in pediatric musculoskeletal malignancies. PET Clin. 2010;5(3):349–61.PubMedCrossRefGoogle Scholar
  69. Gratias EJ, et al. Association of chromosome 1q gain with inferior survival in favorable-histology Wilms tumor: a report from the Children's Oncology Group. J Clin Oncol. 2016;34(26):3189–94.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Green DM. Diagnosis and management of malignant solid tumors in infants and children. Minneapolis, MN: MN Publishing; 1985. p. 129–86.CrossRefGoogle Scholar
  71. Grimer RJ, et al. Osteosarcoma over the age of forty. Eur J Cancer. 2003;39(2):157–63.PubMedCrossRefGoogle Scholar
  72. Grimer RJ, et al. Periosteal osteosarcoma—a European review of outcome. Eur J Cancer. 2005;41(18):2806–11.PubMedCrossRefGoogle Scholar
  73. Grundy PE, et al. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol. 2005;23(29):7312–21.PubMedCrossRefGoogle Scholar
  74. Grundy PE, et al. Clinical significance of pulmonary nodules detected by CT and Not CXR in patients treated for favorable histology Wilms tumor on national Wilms tumor studies-4 and -5: a report from the Children's Oncology Group. Pediatr Blood Cancer. 2012;59(4):631–5.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Gupta A, et al. Multifocal hepatic neoplasia in 3 children with APC gene mutation. Am J Surg Pathol. 2013;37(7):1058–66.PubMedCrossRefGoogle Scholar
  76. Gurney JG, et al. Incidence of cancer in children in the United States. Sex-, race-, and 1-year age-specific rates by histologic type. Cancer. 1995;75(8):2186–95.PubMedCrossRefGoogle Scholar
  77. Hamilton TE, et al. The management of synchronous bilateral Wilms tumor: a report from the National Wilms Tumor Study Group. Ann Surg. 2011;253(5):1004–10.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Han G, et al. Amputation versus limb-salvage surgery in patients with osteosarcoma: a meta-analysis. World J Surg. 2016;40(8):2016–27.PubMedCrossRefGoogle Scholar
  79. Hanks S, et al. Germline mutations in the PAF1 complex gene CTR9 predispose to Wilms tumour. Nat Commun. 2014;5:4398.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Harris MB, et al. Treatment of metastatic osteosarcoma at diagnosis: a Pediatric Oncology Group Study. J Clin Oncol. 1998;16(11):3641–8.PubMedCrossRefGoogle Scholar
  81. Heerema-McKenney A, et al. Congenital teratoma: a clinicopathologic study of 22 fetal and neonatal tumors. Am J Surg Pathol. 2005;29(1):29–38.PubMedCrossRefGoogle Scholar
  82. Heifetz SA, et al. Immature teratomas in children: pathologic considerations: a report from the combined Pediatric Oncology Group/Children's Cancer Group. Am J Surg Pathol. 1998;22(9):1115–24.PubMedCrossRefGoogle Scholar
  83. Hettmer S, et al. Anaplastic rhabdomyosarcoma in TP53 germline mutation carriers. Cancer. 2014;120(7):1068–75.PubMedCrossRefGoogle Scholar
  84. Honeyman JN, et al. Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma. Science. 2014;343(6174):1010–4.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Howlader N, Noone A, Krapcho M, et al. SEER cancer statistics review, 1975–2009. National Cancer Institute: Bethesda, MD; 2012.Google Scholar
  86. Huff V. Wilms tumor genetics. Am J Med Genet. 1998;79(4):260–7.PubMedCrossRefGoogle Scholar
  87. Ikeda H, et al. Development of unfavorable hepatoblastoma in children of very low birth weight: results of a surgical and pathologic review. Cancer. 1998;82(9):1789–96.PubMedCrossRefGoogle Scholar
  88. Indolfi P, et al. Renal cell carcinoma in children: a clinicopathologic study. J Clin Oncol. 2003;21(3):530–5.PubMedCrossRefGoogle Scholar
  89. Johnson KJ, et al. Paediatric germ cell tumours and congenital abnormalities: a Children's Oncology Group study. Br J Cancer. 2009;101(3):518–21.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kaatsch P, et al. Pediatric germ cell tumors from 1987 to 2011: incidence rates, time trends, and survival. Pediatrics. 2015;135(1):e136–43.PubMedCrossRefGoogle Scholar
  91. Kager L, et al. Skip metastases in osteosarcoma: experience of the Cooperative Osteosarcoma Study Group. J Clin Oncol. 2006;24(10):1535–41.PubMedCrossRefGoogle Scholar
  92. Katzenstein HM, et al. Hepatocellular carcinoma in children and adolescents: results from the Pediatric Oncology Group and the Children's Cancer Group intergroup study. J Clin Oncol. 2002;20(12):2789–97.PubMedCrossRefGoogle Scholar
  93. Katzenstein HM, Furman WL, Malogolowkin MH, Krailo MD, McCarville MB, Towbin AJ, Tiao GM, Finegold MJ, Ranganathan S, Dunn SP, Langham MR, McGahren ED, Rodriguez-Galindo C, Meyers RL. Upfront window vincristine/irinotecan treatment of high-risk hepatoblastoma: a report from the Children’s Oncology Group AHEP0731 study committee. Cancer. 2017;123(12):2360–7.  https://doi.org/10.1002/cncr.30591.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Kayton ML, et al. Experience with 31 sentinel lymph node biopsies for sarcomas and carcinomas in pediatric patients. Cancer. 2008;112(9):2052–9.PubMedCrossRefGoogle Scholar
  95. Kim MS, et al. time dependency of prognostic factors in patients with stage II osteosarcomas. Clin Orthop Relat Res. 2007;463:157–65.PubMedGoogle Scholar
  96. Komura E, et al. Thrombopoietin in patients with hepatoblastoma. Stem Cells. 1998;16(5):329–33.PubMedCrossRefGoogle Scholar
  97. Kopp LM, et al. Utility of bone marrow aspiration and biopsy in initial staging of Ewing sarcoma. Pediatr Blood Cancer. 2015;62(1):12–5.PubMedCrossRefGoogle Scholar
  98. Kovar H, et al. Overexpression of the pseudoautosomal gene MIC2 in Ewing's sarcoma and peripheral primitive neuroectodermal tumor. Oncogene. 1990;5(7):1067–70.PubMedGoogle Scholar
  99. Labrune P, et al. Hepatocellular adenomas in glycogen storage disease type I and III: a series of 43 patients and review of the literature. J Pediatr Gastroenterol Nutr. 1997;24(3):276–9.PubMedCrossRefGoogle Scholar
  100. Li FP, Fraumeni JF Jr. Rhabdomyosarcoma in children: epidemiologic study and identification of a familial cancer syndrome. J Natl Cancer Inst. 1969;43(6):1365–73.PubMedGoogle Scholar
  101. Liu AK, et al. Local control of metastatic sites with radiation therapy in metastatic Ewing sarcoma and rhabdomyosarcoma. Pediatr Blood Cancer. 2011;57(1):169–71.PubMedCrossRefGoogle Scholar
  102. Llovet JM, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90.PubMedCrossRefGoogle Scholar
  103. London WB, et al. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children's Oncology Group. J Clin Oncol. 2005;23(27):6459–65.PubMedCrossRefGoogle Scholar
  104. Lopez-Terrada D, et al. Towards an international pediatric liver tumor consensus classification: proceedings of the Los Angeles COG liver tumors symposium. Mod Pathol. 2014;27(3):472–91.PubMedCrossRefGoogle Scholar
  105. Maas SM, et al. Phenotype, cancer risk, and surveillance in Beckwith-Wiedemann syndrome depending on molecular genetic subgroups. Am J Med Genet A. 2016;170(9):2248–60.PubMedCrossRefGoogle Scholar
  106. Mack JW, Grier HE. The day one talk. J Clin Oncol. 2004;22(3):563–6.PubMedCrossRefGoogle Scholar
  107. Mahoney NR, et al. Pediatric horner syndrome: etiologies and roles of imaging and urine studies to detect neuroblastoma and other responsible mass lesions. Am J Ophthalmol. 2006;142(4):651–9.PubMedCrossRefGoogle Scholar
  108. Maibach R, et al. Prognostic stratification for children with hepatoblastoma: the SIOPEL experience. Eur J Cancer. 2012;48(10):1543–9.PubMedCrossRefGoogle Scholar
  109. Malek MM, et al. Review of outcomes of primary liver cancers in children: our institutional experience with resection and transplantation. Surgery. 2010;148(4):778–82. discussion 782–4PubMedCrossRefGoogle Scholar
  110. Malempati S, et al. Rhabdomyosarcoma in infants younger than 1 year: a report from the Children's Oncology Group. Cancer. 2011;117(15):3493–501.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Malogolowkin MH, et al. Germ cell tumors in infancy and childhood: a 45-year experience. Pediatr Pathol. 1990;10(1–2):231–41.PubMedCrossRefGoogle Scholar
  112. Malogolowkin MH, et al. Complete surgical resection is curative for children with hepatoblastoma with pure fetal histology: a report from the Children's Oncology Group. J Clin Oncol. 2011;29(24):3301–6.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Mann JR, et al. The United Kingdom Children's Cancer Study Group's second germ cell tumor study: carboplatin, etoposide, and bleomycin are effective treatment for children with malignant extracranial germ cell tumors, with acceptable toxicity. J Clin Oncol. 2000;18(22):3809–18.PubMedCrossRefGoogle Scholar
  114. Marina NM, et al. Complete surgical excision is effective treatment for children with immature teratomas with or without malignant elements: a Pediatric Oncology Group/Children's Cancer Group Intergroup Study. J Clin Oncol. 1999;17(7):2137–43.PubMedCrossRefGoogle Scholar
  115. Marina N, et al. Prognostic factors in children with extragonadal malignant germ cell tumors: a pediatric intergroup study. J Clin Oncol. 2006;24(16):2544–8.PubMedCrossRefGoogle Scholar
  116. Marina NM, et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open-label, international, randomised controlled trial. Lancet Oncol. 2016;17(10):1396–408.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Maris JM, Matthay KK. Molecular biology of neuroblastoma. J Clin Oncol. 1999;17(7):2264–79.PubMedCrossRefGoogle Scholar
  118. Mascarenhas L, et al. Pilot study of adding vincristine, topotecan, and cyclophosphamide to interval-compressed chemotherapy in newly diagnosed patients with localized ewing sarcoma: a report from the Children's Oncology Group. Pediatr Blood Cancer. 2016;63(3):493–8.PubMedCrossRefGoogle Scholar
  119. Matthay KK, et al. Opsoclonus myoclonus syndrome in neuroblastoma a report from a workshop on the dancing eyes syndrome at the advances in neuroblastoma meeting in Genoa, Italy, 2004. Cancer Lett. 2005;228(1–2):275–82.PubMedCrossRefGoogle Scholar
  120. Maurer HM, et al. The intergroup rhabdomyosarcoma study-II. Cancer. 1993;71(5):1904–22.PubMedCrossRefGoogle Scholar
  121. Meyers RL. Tumors of the liver in children. Surg Oncol. 2007;16(3):195–203.PubMedCrossRefGoogle Scholar
  122. Meyers PA, et al. High-dose melphalan, etoposide, total-body irradiation, and autologous stem-cell reconstitution as consolidation therapy for high-risk Ewing's sarcoma does not improve prognosis. J Clin Oncol. 2001;19(11):2812–20.PubMedCrossRefGoogle Scholar
  123. Meyers RL, et al. Predictive power of pretreatment prognostic factors in children with hepatoblastoma: a report from the Children's Oncology Group. Pediatr Blood Cancer. 2009;53(6):1016–22.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Meyers AB, et al. Hepatoblastoma imaging with gadoxetate disodium-enhanced MRI--typical, atypical, pre- and post-treatment evaluation. Pediatr Radiol. 2012;42(7):859–66.PubMedCrossRefGoogle Scholar
  125. Meza JL, et al. Analysis of prognostic factors in patients with nonmetastatic rhabdomyosarcoma treated on intergroup rhabdomyosarcoma studies III and IV: the Children's Oncology Group. J Clin Oncol. 2006;24(24):3844–51.PubMedCrossRefGoogle Scholar
  126. Milano GM, et al. Tumor lysis syndrome and neuroblastoma. Med Pediatr Oncol. 2003;41(6):592.PubMedCrossRefGoogle Scholar
  127. Mosse YP, et al. Germline PHOX2B mutation in hereditary neuroblastoma. Am J Hum Genet. 2004;75(4):727–30.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Mosse YP, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455(7215):930–5.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Narod SA, et al. Congenital anomalies and childhood cancer in Great Britain. Am J Hum Genet. 1997;60(3):474–85.PubMedPubMedCentralGoogle Scholar
  130. Newman EN, Jones RL, Hawkins DS. An evaluation of [F-18]-fluorodeoxy-D-glucose positron emission tomography, bone scan, and bone marrow aspiration/biopsy as staging investigations in Ewing sarcoma. Pediatr Blood Cancer. 2013;60(7):1113–7.PubMedCrossRefGoogle Scholar
  131. Norris HJ, Zirkin HJ, Benson WL. Immature (malignant) teratoma of the ovary: a clinical and pathologic study of 58 cases. Cancer. 1976;37(5):2359–72.PubMedCrossRefGoogle Scholar
  132. Nuchtern JG, et al. A prospective study of expectant observation as primary therapy for neuroblastoma in young infants: a Children's Oncology Group study. Ann Surg. 2012;256(4):573–80.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Ognjanovic S, et al. Trends in childhood rhabdomyosarcoma incidence and survival in the United States, 1975–2005. Cancer. 2009;115(18):4218–26.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Ognjanovic S, et al. Birth characteristics and the risk of childhood rhabdomyosarcoma based on histological subtype. Br J Cancer. 2010;102(1):227–31.PubMedCrossRefGoogle Scholar
  135. Ognjanovic S, et al. Sarcomas in TP53 germline mutation carriers: a review of the IARC TP53 database. Cancer. 2012;118(5):1387–96.PubMedCrossRefGoogle Scholar
  136. O’Neill AF, Towbin AJ, Krailo MD, Xia C, Gao Y, McCarville MB, Meyers RL, McGahren ED, Tiao GM, Dunn SP, Langham MR Jr, Weldon CB, Finegold MJ, Ranganathan S, Furman WL, Malogolowkin M, Rodriguez-Galindo C, Katzenstein HM. Characterization of pulmonary metastases in children with hepatoblastoma treated on Children’s Oncology Group Protocol AHEP0731 (the treatment of children with all stages of hepatoblastoma): a report from the Children’s Oncology Group. J Clin Oncol. 2017;35(30):3465–73.  https://doi.org/10.1200/JCO.2017.73.5654.CrossRefPubMedGoogle Scholar
  137. Ortega JA, et al. Randomized comparison of cisplatin/vincristine/fluorouracil and cisplatin/continuous infusion doxorubicin for treatment of pediatric hepatoblastoma: a report from the Children's Cancer Group and the Pediatric Oncology Group. J Clin Oncol. 2000;18(14):2665–75.PubMedCrossRefGoogle Scholar
  138. Pakos EE, et al. Prognostic factors and outcomes for osteosarcoma: an international collaboration. Eur J Cancer. 2009;45(13):2367–75.PubMedCrossRefGoogle Scholar
  139. Palculict TB, et al. Identification of germline DICER1 mutations and loss of heterozygosity in familial Wilms tumour. J Med Genet. 2016;53(6):385–8.PubMedCrossRefGoogle Scholar
  140. Pappo AS, Pratt CB. Soft tissue sarcomas in children. Cancer Treat Res. 1997;91:205–22.PubMedCrossRefGoogle Scholar
  141. Parham DM, Ellison DA. Rhabdomyosarcomas in adults and children: an update. Arch Pathol Lab Med. 2006;130(10):1454–65.PubMedGoogle Scholar
  142. Parham DM, et al. Nonrhabdomyosarcomatous soft tissue sarcomas of childhood: formulation of a simplified system for grading. Mod Pathol. 1995;8(7):705–10.PubMedGoogle Scholar
  143. Patel SS, et al. Milan criteria and UCSF criteria: a preliminary comparative study of liver transplantation outcomes in the United States. Int J Hepatol. 2012;2012:253517.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Paulussen M, et al. Localized Ewing tumor of bone: final results of the cooperative Ewing's Sarcoma Study CESS 86. J Clin Oncol. 2001;19(6):1818–29.PubMedCrossRefGoogle Scholar
  145. Pea M, et al. Apparent renal cell carcinomas in tuberous sclerosis are heterogeneous: the identification of malignant epithelioid angiomyolipoma. Am J Surg Pathol. 1998;22(2):180–7.PubMedCrossRefGoogle Scholar
  146. Peifer M, et al. Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature. 2015;526(7575):700–4.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Perilongo G, et al. Cisplatin versus cisplatin plus doxorubicin for standard-risk hepatoblastoma. N Engl J Med. 2009;361(17):1662–70.PubMedCrossRefGoogle Scholar
  148. Perlman EJ. Pediatric renal tumors: practical updates for the pathologist. Pediatr Dev Pathol. 2005;8(3):320–38.PubMedCrossRefGoogle Scholar
  149. Perlman EJ, et al. Hyperplastic perilobar nephroblastomatosis: long-term survival of 52 patients. Pediatr Blood Cancer. 2006;46(2):203–21.PubMedCrossRefGoogle Scholar
  150. Pinto NR, et al. Advances in risk classification and treatment strategies for neuroblastoma. J Clin Oncol. 2015;33(27):3008–17.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Popov SD, et al. Renal tumors in children aged 10–16 Years: a report from the United Kingdom Children's Cancer and Leukaemia Group. Pediatr Dev Pathol. 2011;14(3):189–93.PubMedCrossRefGoogle Scholar
  152. Porteus MH, et al. Characteristics and outcome of children with Beckwith-Wiedemann syndrome and Wilms' tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol. 2000;18(10):2026–31.PubMedCrossRefGoogle Scholar
  153. Raney RB, et al. Results of the intergroup rhabdomyosarcoma study group D9602 protocol, using vincristine and dactinomycin with or without cyclophosphamide and radiation therapy, for newly diagnosed patients with low-risk embryonal rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children's Oncology Group. J Clin Oncol. 2011;29(10):1312–8.PubMedCrossRefGoogle Scholar
  154. Rescorla FJ, et al. Surveillance after initial surgery for Stage I pediatric and adolescent boys with malignant testicular germ cell tumors: report from the Children's Oncology Group. J Pediatr Surg. 2015;50(6):1000–3.PubMedCrossRefGoogle Scholar
  155. Rodriguez-Galindo C, et al. Analysis of prognostic factors in ewing sarcoma family of tumors: review of St. Jude Children's Research Hospital studies. Cancer. 2007;110(2):375–84.PubMedCrossRefGoogle Scholar
  156. Roebuck DJ, et al. 2005 PRETEXT: a revised staging system for primary malignant liver tumours of childhood developed by the SIOPEL group. Pediatr Radiol. 2007;37(2):123–32. quiz 249-50PubMedCrossRefGoogle Scholar
  157. Rogers PC, et al. Treatment of children and adolescents with stage II testicular and stages I and II ovarian malignant germ cell tumors: a pediatric intergroup study--Pediatric Oncology Group 9048 and Children's Cancer Group 8891. J Clin Oncol. 2004;22(17):3563–9.PubMedCrossRefGoogle Scholar
  158. Rudnick E, et al. Opsoclonus-myoclonus-ataxia syndrome in neuroblastoma: clinical outcome and antineuronal antibodies-a report from the Children's Cancer Group Study. Med Pediatr Oncol. 2001;36(6):612–22.PubMedCrossRefGoogle Scholar
  159. Ruteshouser EC, Huff V. Familial Wilms tumor. Am J Med Genet C Semin Med Genet. 2004;129C(1):29–34.PubMedCrossRefGoogle Scholar
  160. Ruteshouser EC, Robinson SM, Huff V. Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer. 2008;47(6):461–70.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Sankar S, et al. Mechanism and relevance of EWS/FLI-mediated transcriptional repression in Ewing sarcoma. Oncogene. 2013;32(42):5089–100.PubMedCrossRefGoogle Scholar
  162. Satge D, et al. Abnormal constitutional karyotypes in patients with neuroblastoma: a report of four new cases and review of 47 others in the literature. Cancer Genet Cytogenet. 2003;147(2):89–98.PubMedCrossRefGoogle Scholar
  163. Schilling FH, et al. Neuroblastoma screening at one year of age. N Engl J Med. 2002;346(14):1047–53.PubMedCrossRefGoogle Scholar
  164. Schleiermacher G, et al. Segmental chromosomal alterations have prognostic impact in neuroblastoma: a report from the INRG project. Br J Cancer. 2012;107(8):1418–22.PubMedPubMedCentralCrossRefGoogle Scholar
  165. Schmid I, et al. Sorafenib and cisplatin/doxorubicin (PLADO) in pediatric hepatocellular carcinoma. Pediatr Blood Cancer. 2012;58(4):539–44.PubMedCrossRefGoogle Scholar
  166. Schultz KA, et al. Ovarian sex cord-stromal tumors, pleuropulmonary blastoma and DICER1 mutations: a report from the International Pleuropulmonary Blastoma Registry. Gynecol Oncol. 2011;122(2):246–50.PubMedPubMedCentralCrossRefGoogle Scholar
  167. Scott RH, et al. Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour. J Med Genet. 2006;43(9):705–15.PubMedPubMedCentralCrossRefGoogle Scholar
  168. Servaes S, et al. Comparison of diagnostic performance of CT and MRI for abdominal staging of pediatric renal tumors: a report from the Children's Oncology Group. Pediatr Radiol. 2015;45(2):166–72.PubMedCrossRefGoogle Scholar
  169. Shamberger RC, et al. Long-term outcomes for infants with very low risk Wilms tumor treated with surgery alone in National Wilms Tumor Study-5. Ann Surg. 2010;251(3):555–8.PubMedPubMedCentralCrossRefGoogle Scholar
  170. Sharp SE, et al. 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med. 2009;50(8):1237–43.PubMedCrossRefGoogle Scholar
  171. Shields CL, et al. The international classification of retinoblastoma predicts chemoreduction success. Ophthalmology. 2006;113(12):2276–80.PubMedCrossRefGoogle Scholar
  172. Shimada H, et al. The International neuroblastoma pathology classification (the Shimada system). Cancer. 1999;86(2):364–72.PubMedCrossRefGoogle Scholar
  173. Shimada H, et al. International neuroblastoma pathology classification for prognostic evaluation of patients with peripheral neuroblastic tumors: a report from the Children's Cancer Group. Cancer. 2001;92(9):2451–61.PubMedCrossRefGoogle Scholar
  174. Siebel NL, Sun J, Anderson JR, et al. Outcome of clear cell sarcoma of the kidney (CCSK) treated on the National Wilms Tumor Study-5 (NWTS). Abstract. J Clin Oncol. 2006;24(Suppl 18):A-9000, 502s.Google Scholar
  175. Smith SC, et al. CIC-DUX sarcomas demonstrate frequent MYC amplification and ETS-family transcription factor expression. Mod Pathol. 2015;28(1):57–68.PubMedCrossRefGoogle Scholar
  176. Spunt SL, et al. Risk-based treatment for nonrhabdomyosarcoma soft tissue sarcomas (MRSTS) in patients under 30 yeras of age: Children’s Oncology Group study ARST0332. Abstract. J Clin Oncol. 2014;32(Suppl 15):A-10008.Google Scholar
  177. Strother DR, et al. Outcome after surgery alone or with restricted use of chemotherapy for patients with low-risk neuroblastoma: results of Children's Oncology Group study P9641. J Clin Oncol. 2012;30(15):1842–8.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Sumazin P, et al. Genomic analysis of hepatoblastoma identifies distinct molecular and prognostic subgroups. Hepatology. 2016;65(1):104–21.PubMedCrossRefGoogle Scholar
  179. Sun L, et al. Prognostic value of pathologic fracture in patients with high grade localized osteosarcoma: a systemic review and meta-analysis of cohort studies. J Orthop Res. 2015;33(1):131–9.PubMedCrossRefGoogle Scholar
  180. Swartz MA, et al. Renal medullary carcinoma: clinical, pathologic, immunohistochemical, and genetic analysis with pathogenetic implications. Urology. 2002;60(6):1083–9.PubMedCrossRefGoogle Scholar
  181. Tajiri H, et al. Reduction of hepatocellular carcinoma in childhood after introduction of selective vaccination against hepatitis B virus for infants born to HBV carrier mothers. Cancer Causes Control. 2011;22(3):523–7.PubMedCrossRefGoogle Scholar
  182. Tanaka Y, et al. Gonadal mixed germ cell tumor combined with a large hemangiomatous lesion in a patient with Turner's syndrome and 45,X/46,X, +mar karyotype. Arch Pathol Lab Med. 1994;118(11):1135–8.PubMedGoogle Scholar
  183. Teshiba R, et al. Age-dependent prognostic effect by Mitosis-Karyorrhexis Index in neuroblastoma: a report from the Children's Oncology Group. Pediatr Dev Pathol. 2014;17(6):441–9.PubMedPubMedCentralCrossRefGoogle Scholar
  184. Tiao GM, et al. The current management of hepatoblastoma: a combination of chemotherapy, conventional resection, and liver transplantation. J Pediatr. 2005;146(2):204–11.PubMedCrossRefGoogle Scholar
  185. Tirode F, et al. Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov. 2014;4(11):1342–53.PubMedPubMedCentralCrossRefGoogle Scholar
  186. Trobaugh-Lotrario AD, et al. Small cell undifferentiated variant of hepatoblastoma: adverse clinical and molecular features similar to rhabdoid tumors. Pediatr Blood Cancer. 2009;52(3):328–34.PubMedPubMedCentralCrossRefGoogle Scholar
  187. Walterhouse DO, et al. Shorter-duration therapy using vincristine, dactinomycin, and lower-dose cyclophosphamide with or without radiotherapy for patients with newly diagnosed low-risk rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children's Oncology Group. J Clin Oncol. 2014;32(31):3547–52.PubMedPubMedCentralCrossRefGoogle Scholar
  188. Wang N, Perkins KL. Involvement of band 3p14 in t(3;8) hereditary renal carcinoma. Cancer Genet Cytogenet. 1984;11(4):479–81.PubMedCrossRefGoogle Scholar
  189. Wang LL, et al. Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. J Natl Cancer Inst. 2003;95(9):669–74.PubMedCrossRefGoogle Scholar
  190. Weigel BJ, et al. Intensive multiagent therapy, including dose-compressed cycles of ifosfamide/etoposide and vincristine/doxorubicin/cyclophosphamide, irinotecan, and radiation, in patients with high-risk rhabdomyosarcoma: a report from the Children's Oncology Group. J Clin Oncol. 2016;34(2):117–22.PubMedCrossRefGoogle Scholar
  191. Wiener ES, et al. Controversies in the management of paratesticular rhabdomyosarcoma: is staging retroperitoneal lymph node dissection necessary for adolescents with resected paratesticular rhabdomyosarcoma? Semin Pediatr Surg. 2001;10(3):146–52.PubMedCrossRefGoogle Scholar
  192. Williams SD, et al. Treatment of disseminated germ-cell tumors with cisplatin, bleomycin, and either vinblastine or etoposide. N Engl J Med. 1987;316(23):1435–40.PubMedCrossRefGoogle Scholar
  193. de Wit R, Fizazi K. Controversies in the management of clinical stage I testis cancer. J Clin Oncol. 2006;24(35):5482–92.PubMedCrossRefGoogle Scholar
  194. Wolden SL, et al. Indications for radiotherapy and chemotherapy after complete resection in rhabdomyosarcoma: a report from the Intergroup rhabdomyosarcoma studies I to III. J Clin Oncol. 1999;17(11):3468–75.PubMedCrossRefGoogle Scholar
  195. Womer RB, West DC, Krailo MD, Dickman PS, Pawel BR, Grier HE, Marcus K, Sailer S, Healey JH, Dormans JP, Weiss AR. Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(33):4148–54.  https://doi.org/10.1200/JCO.2011.41.5703.CrossRefPubMedPubMedCentralGoogle Scholar
  196. Wong FL, et al. Cancer incidence after retinoblastoma. Radiation dose and sarcoma risk. JAMA. 1997;278(15):1262–7.PubMedCrossRefGoogle Scholar
  197. Woods WG, et al. Screening of infants and mortality due to neuroblastoma. N Engl J Med. 2002;346(14):1041–6.PubMedCrossRefGoogle Scholar
  198. Wunder JS, et al. The histological response to chemotherapy as a predictor of the oncological outcome of operative treatment of Ewing sarcoma. J Bone Joint Surg Am. 1998;80(7):1020–33.PubMedCrossRefGoogle Scholar
  199. Yanik GA, et al. Semiquantitative mIBG scoring as a prognostic indicator in patients with stage 4 neuroblastoma: a report from the Children's oncology group. J Nucl Med. 2013;54(4):541–8.PubMedPubMedCentralCrossRefGoogle Scholar
  200. Yu AL, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med. 2010;363(14):1324–34.PubMedPubMedCentralCrossRefGoogle Scholar
  201. Zsiros J, et al. Dose-dense cisplatin-based chemotherapy and surgery for children with high-risk hepatoblastoma (SIOPEL-4): a prospective, single-arm, feasibility study. Lancet Oncol. 2013;14(9):834–42.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dana-Farber Cancer InstituteMassachusettsUSA

Personalised recommendations