Skip to main content

Global Optimal Solution to Quadratic Discrete Programming Problem with Inequality Constraints

  • Chapter
  • First Online:

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 37))

Abstract

This paper presents a canonical dual method for solving a quadratic discrete value selection problem subjected to inequality constraints. By using a linear transformation, the problem is first reformulated as a standard quadratic 0–1 integer programming problem. Then, by the canonical duality theory, this challenging problem is converted to a concave maximization over a convex feasible set in continuous space. It is proved that if this canonical dual problem has a solution in its feasible space, the corresponding global solution to the primal problem can be obtained directly by a general analytical form. Otherwise, the problem could be NP-hard. In this case, a quadratic perturbation method and an associated canonical primal-dual algorithm are proposed. Numerical examples are illustrated to demonstrate the efficiency of the proposed method and algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The inequality \(\det \mathbf{G}(\varvec{\varsigma }) \ne 0\) is not a constraint since the Lagrange multiplier for this inequality is identical zero.

References

  1. Arora, J.S., Huang, M.W., Hsieh, C.C.: Methods for optimization of nonlinear problems with discrete variables: a review. Struct. Optim. 8, 69–85 (1994)

    Article  Google Scholar 

  2. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 58, 295–324 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belmiloudi, A.: Stabilization, Optimal and Robust Control: Theory and Applications in Biological and Physical Science. Springer, London (2008)

    MATH  Google Scholar 

  4. Bertsimas, D., Shioda, R.: Classification and regression via integer optimization. Oper. Res. 55(2), 252–271 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, D.S., Batson, R.G., Dang, Y.: Applied Integer Programming: Modeling and Solution. Wiley, New Jersey (2010)

    MATH  Google Scholar 

  6. Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  7. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Upper Saddle River (1983)

    MATH  Google Scholar 

  8. Fang, S.C., Gao, D.Y., Sheu, R.L., Wu, S.Y.: Canonical dual approach to solving 0–1 quadratic programming problems. J. Ind. Manag. Optim. 4(4), 125–142 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Floudas, C.A.: Nonlinear and Mixed-Integer Optimization: Theory Methods and Applications. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  10. Gao, D.Y.: Duality Principles in Nonconvex Systems: Theory, Methods and Applications, p. 454. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  11. Gao, D.Y.: Nonconvex semi-linear problems and canonical duality solutions, In: Advances in Mechanics and Mathematics, vol. II, pp. 261–312. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  12. Gao, D.Y.: Solutions and optimality criteria to box constrained nonconvex minimization problem. J. Ind. Manag. Optim. 3(2), 293–304 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao, D.Y.: Canonical duality theory: unified understanding and generalized solution for global optimization problems. Comput. Chem. Eng. 33, 1964–1972 (2009)

    Article  Google Scholar 

  14. Gao, D.Y., Ogden, R.W.: Multiple solutions to non-convex variational problems with implications for phase transitions and numerical computation. Q. J. Mech. Appl. Math 61(4), 497–522 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao, D.Y., Ruan, N.: Solutions and optimality criteria for nonconvex quadratic-exponential minimization problem. Math. Method. Oper. Res. 67, 479–496 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao, D.Y., Ruan, N.: Solutions to quadratic minimization problems with box and integer constraints. J. Glob. Optim. 47, 463–484 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gao, D.Y., Ruan, N., Pardalos, P.M.: Canonical dual solutions to sum of fourth-order polynomials minimization problems with applications to sensor network localization. In: Boginski, V.L., Commander, C.W., Pardalos, P.M., Ye, Y.Y. (eds.) Sensors: Theory, Algorithms and Applications, vol. 61, pp. 37–54. Springer, Berlin (2012)

    Chapter  Google Scholar 

  18. Gao, D.Y., Ruan, N., Sherali, H.D.: Solutions and optimality criteria for nonconvex constrained global optimization problems. J. Glob. Optim. 45, 473–497 (2009)

    Article  MATH  Google Scholar 

  19. Gao, D.Y., Sherali, H.D.: Canonical duality: connection between nonconvex mechanics and global optimization. In: Advances in Application Mathematics and Global Optimization, pp. 249–316. Springer, Berlin (2009)

    Google Scholar 

  20. Gao, D.Y., Watson, L.T., Easterling, D.R., Thacker, W.I., Billups, S.C.: Solving the canonical dual of box- and integer-constrained nonconvex quadratic programs via a deterministic direct search algorithm. Optim. Methods Softw. 28(2), 313–326 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ghaddar, B., Vera, J.C., Anjos, M.: Second-order cone relaxations for binary quadratic polynomial programs. SIAM J. Optim. 21, 391–414 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Holland, J.H.: Adaptation in Natural and Artificial System. The University of Michigan Press, Ann, Arbor, MI (1975)

    Google Scholar 

  23. Huang, M.W., Arora, J.S.: Optimal design with discrete variables: Some numerical experiments. INT. J. Numer. Meth. Eng. 40, 165–188 (1997)

    Article  Google Scholar 

  24. Karlof, J.K.: Integer Programming: Theory and Practice. CRC Press, Boca Raton (2006)

    MATH  Google Scholar 

  25. Kincaid, R.K., Padula, S.L.: Minimizing distortion and internal forces in truss structures by simulated annealing. In: Proceedings of the 31st AIAA SDM Conference, Long Beach, CA, pp. 327–333 (1990)

    Google Scholar 

  26. Latorrie, V., Gao, D.Y.: Canonical duality for solving general nonconvex constrained problems. Optim. Lett. 10(8), 1–17 (2015)

    MathSciNet  Google Scholar 

  27. Li, S.F., Gupta, A.: On dual configuration forces. J. Elast. 84, 13–31 (2006)

    Article  MATH  Google Scholar 

  28. Loh, H.T., Papalambros, P.Y.: Computational implementation and tests of a sequential linearization approach for solving mixed-discrete nonlinear design optimization. J. Mech. Des. ASME 113, 335–345 (1991)

    Article  Google Scholar 

  29. Marsten, R.E., Morin, T.L.: A hybrid approach to discrete mathematical programming. Math. Program. 14, 21–40 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  31. Ruan, N., Gao, D.Y.: Global optimal solutions to a general sensor network localization problem. Perform. Eval. 75–76, 1–16 (2014)

    Article  Google Scholar 

  32. Ruan, N., Gao, D.Y., Jiao, Y.: Canonical dual least square method for solving general nonlinear systems of equations. Comput. Optim. Appl. 47, 335–347 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sandgren, E.: Nonlinear integer and discreter programming in mechanical design optimizatin. J. Mech. Des. ASME. 112, 223–229 (1990)

    Article  Google Scholar 

  34. Santos, H.A.F.A., Moitinho De Almeida, J.P.: Dual extremum principles for geometrically exact finite strain beams. Int/ J. Nonlinear Mech. Elsevier 46(1), 151 (2010)

    Article  Google Scholar 

  35. Sherali, H.D., Smith, J.C.: An improved linearization strategy for zero-one quadratic programming problems. Optim. Lett. 1(1), 33–47 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sturn, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cone. Optim. Meth. Softw. 11, 625–653 (1999)

    Google Scholar 

  37. Thanedar, P.B., Vanderplaats, G.N.: A survey of discrete variable optimization for structural design. J. Struct. Eng. ASCE 121, 301–306 (1994)

    Article  Google Scholar 

  38. Wang, S., Teo, K.L., Lee, H.W.J.: A new approach to nonlinear mixed discrete programming problems. Eng. Optim. 30(3), 249–262 (1998)

    Article  Google Scholar 

  39. Wang, Z.B., Fang, S.C., Gao, D.Y., Xing, W.X.: Global extremal conditions for multi-integer quadratic programming. J. Ind. Manag. Optim. 4(2), 213–225 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, Z.B., Fang, S.C., Gao, D.Y., Xing, W.X.: Canonical dual approach to solving the maximum cut problem. J. Glob. Optim. 54(2), 341–351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zecchin, A.C., Simpson, A.R., Maier, H.R., Nixon, J.B.: Parametric study for an ant algorithm applied to water distribution system optimization. IEEE Trans. Evol. Comput. 9(2), 175–191 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by US Air Force Office of Scientific Research under grants FA2386-16-1-4082 and FA9550-17-1-0151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Ruan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ruan, N., Gao, D.Y. (2017). Global Optimal Solution to Quadratic Discrete Programming Problem with Inequality Constraints. In: Gao, D., Latorre, V., Ruan, N. (eds) Canonical Duality Theory. Advances in Mechanics and Mathematics, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-58017-3_16

Download citation

Publish with us

Policies and ethics