Skip to main content

Discrete Minimal Surfaces of Koebe Type

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2184))

Abstract

There is an increasing interest to find suitable discrete analogs for known geometric notions and shapes like minimal surfaces. In this article, we consider parametrized surfaces which lead to quadrilateral meshes. In particular, we choose a parametrization where the second fundamental form is diagonal. In addition to the discrete surface we consider a line congruence at the vertices which can be interpreted as a discrete Gauss map. This easily leads to parallel offset meshes. Comparing the areas of two such parallel planar quadrilaterals can then be used to define discrete mean and Gaussian curvature analogously as in the smooth case. This approach leads to a simple notion of discrete minimal surfaces which contains several known definitions as special cases. We especially focus on discrete minimal surfaces whose discrete Gauss map is given by a Koebe polyhedron, i.e. a polyhedral surface with edges tangent to the unit sphere. This case is closely connected to the theory of S-isothermic discrete minimal surfaces. We remind the construction scheme and present analogs for several known smooth minimal surface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://gallery.discretization.de.

References

  1. Bobenko, A.I., Hoffmann, T.: S-conical CMC surfaces. Towards a unified theory of discrete surfaces with constant mean curvature. In: Bobenko, A.I. (ed.) Advances in Discrete Differential Geometry, pp. 287–308. Springer, Berlin (2016)

    Chapter  Google Scholar 

  2. Bobenko, A.I., Pinkall, U.: Discrete isothermic surfaces. J. Reine Angew. Math. 475, 187–208 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Bobenko, A.I., Pinkall, U.: Discretization of surfaces and integrable systems. In: Bobenko, A.I., Seiler, R. (eds.) Discrete Integrable Geometry and Physics, pp. 3–58. Clarendon Press, Oxford (1999)

    Google Scholar 

  4. Bobenko, A.I., Springborn, B.A.: Variational principles for circle patterns and Koebe’s theorem. Trans. Am. Math. Soc. 356, 659–689 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bobenko, A.I., Suris, Y.B.: Discrete Differential Geometry. Integrable Structure. Graduate Studies in Mathematics, vol. 98. American Mathematical Society, Providence, RI (2008). doi:http://dx.doi.org/10.1090/gsm/098

  6. Bobenko, A.I., Suris, J.B.: Discrete Koenigs nets and discrete isothermic surfaces. Int. Math. Res. Not. 11, 1976–2012 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Bobenko, A.I., Hoffmann, T., Springborn, B.A.: Minimal surfaces from circle patterns: Geometry from combinatorics. Ann. Math. 164(1), 231–264 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bobenko, A.I., Pottmann, H., Wallner, J.: A curvature theory for discrete surfaces based on mesh parallelity. Math. Ann. 348, 1–24 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bobenko, A., Hoffmann, T., König, B., Sechelmann, S.: S-conical minimal surfaces. Towards a unified theory of discrete minimal surfaces (2015). http://www.discretization.de/en/publications/. Preprint

  10. Brakke, K.A.: Triply periodic minimal surfaces. Internet (cited 2017 Jan 10). http://www.susqu.edu/facstaff/b/brakke/evolver/examples/periodic/periodic.html

  11. Brightwell, G.R., Scheinerman, E.R.: Representations of planar graphs. SIAM J. Discrete Math. 6(2), 214–229 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bücking, U.: Approximation of conformal mappings by circle patterns and discrete minimal surfaces. Ph.D. thesis, Technische Universität Berlin (2007). Published online at http://opus.kobv.de/tuberlin/volltexte/2008/1764/

  13. Bücking, U.: Approximation of conformal mappings by circle patterns. Geom. Dedicata 137, 163–197 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Christoffel, E.B.: Über einige allgemeine Eigenschaften der Minimumsflächen. J. Reine Angew. Math. 67, 218–228 (1867)

    Article  MathSciNet  Google Scholar 

  15. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  16. Dierkes, U., Hildebrandt, S., Küster, A., Wohlrab, O.: Minimal Surfaces I. Springer, Berlin (1992)

    MATH  Google Scholar 

  17. Dziuk, G.: An algorithm for evolutionary surfaces. Numer. Math. 58, 603–611 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dziuk, G., Hutchinson, J.E.: The discrete Plateau problem: algorithm and numerics. Math. Comput. 68, 1–23 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gergonne, J.D.: Questions proposées/résolues. Ann. Math. Pure Appl. 7, 68, 99–100, 156, 143–147 (1816)

    Google Scholar 

  20. Hertrich-Jeromin, U.: Introduction to Möbius Differential Geometry. London Mathematical Society Lecture Note Series, vol. 300. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  21. Joswig, M., Mehner, M., Sechelmann, S., Techter, J., Bobenko, A.I.: DGD Gallery: Storage, sharing, and publication of digital research data. In: Bobenko, A.I. (ed.) Advances in Discrete Differential Geometry, pp. 421–439. Springer, Berlin (2016)

    Chapter  Google Scholar 

  22. Karcher, H.: The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions. Manuscr. Math. 64, 291–357 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Koebe, P.: Kontaktprobleme der konformen Abbildung. Abh. Sächs. Akad. Wiss. Leipzig Math.-Natur. Kl. 88, 141–164 (1936)

    MATH  Google Scholar 

  24. Müller, C., Wallner, J.: Oriented mixed area and discrete minimal surfaces. Discrete Comput. Geom. 43, 303–320 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Neovius, E.R.: Bestimmung zweier spezieller periodischer Minimalflächen, auf welchen unendlich viele gerade Linien und unendlich viele ebene geodätische Linien liegen. J. C. Frenckell & Sohn, Helsingfors (1883)

    MATH  Google Scholar 

  26. Nitsche, J.C.C.: Lectures on Minimal Surfaces, vol. 1. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  27. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2, 15–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pottmann, H., Liu, Y., Wallner, J., Bobenko, A.I., Wang, W.: Geometry of multi-layer freeform structures for architecture. ACM Trans. Graph. 26(3), 65 (2007). In: Proceedings of SIGGRAPH

    Google Scholar 

  29. Riemann, B.: Über die Fläche vom kleinsten Inhalt bei gegebener Begrenzung. Abh. Königl. Ges. d. Wiss. Göttingen, Mathem. Cl. 13, 3–52 (1867). K. Hattendorff, edit.

    Google Scholar 

  30. Riemann, B.: Gesammelte Mathematische Werke - Nachträge. Teubner, Leipzig (1876/1902)

    Google Scholar 

  31. Rivin, I.: A characterization of ideal polyhedra in hyperbolic 3-space. Ann. Math. 143, 51–70 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schneider, R.: Convex bodies: the Brunn-Minkowski Theory. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  33. Schoen, A.H.: Infinite periodic minimal surfaces without self-intersections. Technical Report D-5541, NASA (1970). Technical Note

    Google Scholar 

  34. Schramm, O.: How to cage an egg. Invent. Math. 107(3), 543–560 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schwarz, H.A.: Gesammelte Mathematische Abhandlungen, vol. 1. Springer, Berlin (1890)

    Book  MATH  Google Scholar 

  36. Sechelmann, S.: Discrete minimal surfaces, Koebe polyhedra, and Alexandrov’s theorem. variational principles, algorithms, and implementation. Diploma thesis, Technische Universität Berlin (2007). www.sechel.de

  37. Springborn, B.A.: Variational principles for circle patterns. Ph.D. thesis, Technische Universität Berlin (2003). Published online at http://opus.kobv.de/tuberlin/volltexte/2003/668/

  38. Tsuchiya, T.: Discrete solution of the Plateau problem and its convergence. Math. Comput. 49, 157–165 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors were supported by the DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Bücking .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Bobenko, A.I., Bücking, U., Sechelmann, S. (2017). Discrete Minimal Surfaces of Koebe Type. In: Najman, L., Romon, P. (eds) Modern Approaches to Discrete Curvature. Lecture Notes in Mathematics, vol 2184. Springer, Cham. https://doi.org/10.1007/978-3-319-58002-9_8

Download citation

Publish with us

Policies and ethics