Skip to main content

Inference of Curvature Using Tubular Neighborhoods

  • Chapter
  • First Online:
Modern Approaches to Discrete Curvature

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2184))

Abstract

Geometric inference deals with the problem of recovering the geometry and topology of a compact subset K of \(\mathbb{R}^{d}\) from an approximation by a finite set P. This problem has seen several important developments in the previous decade. Many of the proposed constructions share a common feature: they estimate the geometry of the underlying compact set K using offsets of P, that is r-sublevel set of the distance function to P. These offset correspond to what is called tubular neighborhoods in differential geometry. First and second-order geometric quantities are encoded in the tube K r around a manifold. For instance, the classical tube formula asserts that it is possible to estimate the curvature of a compact smooth submanifold K from the volume of its offsets. One can hope that if the finite set P is close to K in the Hausdorff sense, some of this geometric information remains in the offsets of P. In this chapter, we will see how this idea can be used to infer generalized notions of curvature such as Federer’s curvature measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This generalized gradient coincides with the orthogonal projection of the origin on the supdifferential of the distance function [5, Lemma 5.2].

References

  1. Alliez, P., Cohen-Steiner, D., Tong, Y., Desbrun, M.: Voronoi-based variational reconstruction of unoriented point sets. In: Proceedings of the Eurographics Symposium on Geometry Processing, vol. 7, pp. 39–48 (2007)

    Google Scholar 

  2. Amenta, N., Bern, M.: Surface reconstruction by Voronoi filtering. Discret. Comput. Geom. 22(4), 481–504 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton-Jacobi equations, and optimal control. In: Progress in Nonlinear Differential Equations and their Applications, vol. 58. Birkhäuser Boston Inc., Boston (2004)

    Google Scholar 

  4. Chazal, F., Cohen-Steiner, D., Lieutier, A., Thibert, B.: Shape smoothing using double offsets. In: Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling, pp. 183–192. ACM (2007)

    Google Scholar 

  5. Chazal, F., Cohen-Steiner, D., Lieutier, A.: Normal cone approximation and offset shape isotopy. Comput. Geom. 42(6), 566–581 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chazal, F., Cohen-Steiner, D., Lieutier, A.: A sampling theory for compact sets in Euclidean space. Discret. Comput. Geom. 41(3), 461–479 (2009)

    Article  MATH  Google Scholar 

  7. Chazal, F., Cohen-Steiner, D., Lieutier, A., Thibert, B.: Stability of curvature measures. Comput. Graphics Forum 28, 1485–1496 (2009)

    Article  Google Scholar 

  8. Chazal, F., Cohen-Steiner, D., Mérigot, Q.: Boundary measures for geometric inference. Found. Comput. Math. 10(2), 221–240 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen-Steiner, D., Morvan, J.M.: Second fundamental measure of geometric sets and local approximation of curvatures. J. Differ. Geom. 74(3), 363–394 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cuel, L., Lachaud, J.O., Mérigot, Q., Thibert, B.: Robust geometry estimation using the generalized Voronoi covariance measure. SIAM J. Imag. Sci. 8(2), 1293–1314 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Edelsbrunner, H.: The union of balls and its dual shape. In: Proceedings of the Ninth Annual Symposium on Computational Geometry, pp. 218–231. ACM (1993)

    Google Scholar 

  12. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  13. Federer, H.: Geometric Measure Theory. Springer, Berlin (1969)

    MATH  Google Scholar 

  14. Fu, J.: Tubular neighborhoods in Euclidean spaces. Duke Math. J. 52(4), 1025–1046 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hug, D., Schneider, R.: Local tensor valuations. Geom. Funct. Anal. 24(5), 1516–1564 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hug, D., Kiderlen, M., Svane, A.M.: Voronoi-based estimation of Minkowski tensors from finite point samples. Discret. Comput. Geom. 57(3), 545–570 (2017). https://link.springer.com/article/10.1007%2Fs00454-016-9851-x

  17. Lieutier, A.: Any open bounded subset of \(\mathbb{R}^{n}\) has the same homotopy type as its medial axis. Comput. Aided Geom. Des. 36(11), 1029–1046 (2004)

    Article  Google Scholar 

  18. Mérigot, Q.: Geometric structure detection in point clouds. Theses, Université Nice Sophia Antipolis (2009). https://tel.archives-ouvertes.fr/tel-00443038

    Google Scholar 

  19. Mérigot, Q., Ovsjanikov, M., Guibas, L.: Voronoi-based curvature and feature estimation from point clouds. IEEE Trans. Vis. Comput. Graph. 17(6), 743–756 (2011)

    Article  Google Scholar 

  20. Motzkin, T.: Sur quelques propriétés caractéristiques des ensembles convexes. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 21, 562–567 (1935)

    MATH  Google Scholar 

  21. Petrunin, A.: Semiconcave functions in Alexandrov’s geometry. In: Surveys in Differential Geometry, vol. XI, pp. 137–201. Int. Press, Somerville (2007)

    Google Scholar 

  22. Rataj, J., Zähle, M.: Normal cycles of Lipschitz manifolds by approximation with parallel sets. Differ. Geom. Appl. 19(1), 113–126 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rataj, J., Zähle, M.: General normal cycles and Lipschitz manifolds of bounded curvature. Ann. Global Anal. Geom. 27(2), 135–156 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Weyl, H.: On the volume of tubes. Am. J. Math. 61(2), 461–472 (1939)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin Mérigot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Chazal, F., Cohen-Steiner, D., Lieutier, A., Mérigot, Q., Thibert, B. (2017). Inference of Curvature Using Tubular Neighborhoods. In: Najman, L., Romon, P. (eds) Modern Approaches to Discrete Curvature. Lecture Notes in Mathematics, vol 2184. Springer, Cham. https://doi.org/10.1007/978-3-319-58002-9_4

Download citation

Publish with us

Policies and ethics