Skip to main content

An Efficient Implementation of Boolean Gröbner Basis Computation

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2016)

Abstract

The computation of boolean Gröbner bases has become an increasingly popular technique for solving systems of boolean equations that appear in cryptography. This technique has been used to solve some cryptosystems for the first time. In this paper, we describe a new concurrent algorithm for boolean Gröbner basis computation that is capable of solving the first HFE challenge. We also discuss implementation details, including optimal runtime parameters that depend on the CPU architecture. Our implementation is available as open source software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bardet, M., Faugère, J.C., Salvy, B., Spaenlehauer, P.J.: On the complexity of solving quadratic Boolean systems. J. Complex. 29(1), 53–75 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayer, D., Stillman, M.: A theorem on refining division orders by the reverse lexicographic order. Duke Math. J. 55(2), 321–328 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bosma, W., Cannon, J., Playoust, C.: Magma calculator (2016). http://magma.maths.usyd.edu.au/calc/

  4. Bosma, W., Cannon, J., Playoust, C.: Magma computer algebra documentation (2016). https://magma.maths.usyd.edu.au/magma/handbook/text/1207

  5. Brickenstein, M., Dreyer, A.: PolyBori: a framework for Gröbner basis computations with Boolean polynomials. J. Symb. Comput. 44(9), 1326–1345 (2009). Effective Methods in Algebraic Geometry

    Article  MATH  Google Scholar 

  6. Buchberger, B.: An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal. Ph.D. thesis (2006)

    Google Scholar 

  7. Buchberger, B.: A criterion for detecting unnecessary reductions in the construction of Gröbner-bases. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 3–21. Springer, Heidelberg (1979). doi:10.1007/3-540-09519-5_52

    Chapter  Google Scholar 

  8. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6_27

    Chapter  Google Scholar 

  9. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics, 3rd edn. Springer, New York (2007)

    Book  MATH  Google Scholar 

  10. Developers, T.S.: SageMath, the Sage Mathematics Software System (2016). http://www.sagemath.org

  11. Eder, C.: An analysis of inhomogeneous signature-based Gröbner basis computations. J. Symb. Comput. 59, 21–35 (2013)

    Article  MATH  Google Scholar 

  12. Faugère, J., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–344 (1993)

    Article  MATH  Google Scholar 

  13. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl. Algebra 139(1–3), 61–88 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, NY, USA, pp. 75–83. ACM, New York (2002)

    Google Scholar 

  15. Faugère, J.-C.: FGb: a library for Computing Gröbner bases. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 84–87. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15582-6_17

    Chapter  Google Scholar 

  16. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of Hidden Field Equation (HFE) cryptosystems using Gröbner Bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4_3

    Chapter  Google Scholar 

  17. Fayssal, M.: Faugére-Lachartre Parallel Gaussian Elimination for Gröbner Bases Computations Over Finite Fields. Master’s thesis, Pierre and Marie Curie University (2012)

    Google Scholar 

  18. Gebauer, R., Möller, H.M.: On an installation of Buchberger’s algorithm. J. Symb. Comput. 6(2–3), 275–286 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/

  20. Herrera García, J.L.J.: Autenticación y Cifrado Basado en Ecuaciones Cuadráticas de Varias Variables. Ph.D. thesis, Instituto Politécnico Nacional (2015)

    Google Scholar 

  21. Hinkelmann, F., Arnold, E.: Fast Gröbner basis computation for boolean polynomials. CoRR (2010)

    Google Scholar 

  22. Mohamed, M.S.E., Cabarcas, D., Ding, J., Buchmann, J., Bulygin, S.: MXL3: an efficient algorithm for computing Gröbner bases of zero-dimensional ideals. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 87–100. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14423-3_7

    Chapter  Google Scholar 

  23. Nguyen, T.H.: Combinations of Boolean Gröbner Bases and SAT Solvers. Ph.D. thesis, University of Kaiserslautern (2014)

    Google Scholar 

  24. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). doi:10.1007/3-540-68339-9_4

    Google Scholar 

  25. Roune, B.H., Stillman, M.: Practical Gröbner basis computation. In: Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, ISSAC 2012, NY, USA, pp. 203–210. ACM, New York (2012)

    Google Scholar 

  26. Steel, A.: A dense variant of the F4 Gröbner basis algorithm (2013). http://magma.maths.usyd.edu.au/~allan/densef4/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Alexander Castro Campos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Castro Campos, R.A., Sagols Troncoso, F.D., Zaragoza Martínez, F.J. (2017). An Efficient Implementation of Boolean Gröbner Basis Computation. In: Barrios Hernández, C., Gitler, I., Klapp, J. (eds) High Performance Computing. CARLA 2016. Communications in Computer and Information Science, vol 697. Springer, Cham. https://doi.org/10.1007/978-3-319-57972-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57972-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57971-9

  • Online ISBN: 978-3-319-57972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics