Skip to main content

Super Free Fall of a Liquid Frustum in a Semi-infinite Cone

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 697))

Included in the following conference series:

  • 822 Accesses

Abstract

In this paper we have analyzed theoretically the super free fall of a near inviscid mass of liquid, which fills partially a small section of a very long vertical conical pipe. Through the use of a one-dimensional inviscid model, we describe the simultaneous and pecular motion of the two interphases of the liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Villaermaux, E., Pomeau, Y.: Super free fall. J. Fluid Mech. 642, 147 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Torres, A., Medina, A., Higuera, F.J., Weidman, P.D.: On super free fall. J. Fluid Mech. 642, 147–157 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Treviño, C., Peralta, S., Torres, A., Medina, A.: Super free fall of an inviscid liquid through interconnected vertical pipes. Europhys. Lett. 112(1) (2015). Article no. 14002

    Google Scholar 

  4. Vollmer, M., Mollman, K.-P.: Is there a maximum size of water drops in nature? Phys. Teach. 51(7), 400–402 (2013)

    Article  Google Scholar 

  5. Virga, E.G.: Chain paradoxes. Proc. R. Soc. Lond. 471 (2015). Article no. 20140657

    Google Scholar 

  6. White, F.M.: Viscous Fluid Flow. McGraw-Hill, New York (2006)

    Google Scholar 

  7. Gill, S.: A process for the step-by-step integration of differential equations in an automatic digital computing machine. Math. Proc. Camb. Philos. Soc. 47, 96–108 (1951). Cambridge University Press

    Article  MathSciNet  MATH  Google Scholar 

  8. Blum, E.K.: A modification of the Runge-Kutta Fourth Order Method. http://www.ams.org

Download references

Acknowledgments

This work has been partially supported by the Instituto Politécnico Nacional (México), through projects SIP 20121347 and SIP 20120286, and by the Consejo Nacional de Ciencia y Tecnología (CONACyT) under the project CONACyT-EDOMEX-2011-C01-165873. The calculations for this work were performed in the Abacus I supercomputer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Áyax Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Torres, Á., Peralta, S., Medina, A., Klapp, J., Higuera, F. (2017). Super Free Fall of a Liquid Frustum in a Semi-infinite Cone. In: Barrios Hernández, C., Gitler, I., Klapp, J. (eds) High Performance Computing. CARLA 2016. Communications in Computer and Information Science, vol 697. Springer, Cham. https://doi.org/10.1007/978-3-319-57972-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57972-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57971-9

  • Online ISBN: 978-3-319-57972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics