Skip to main content

On Finite Size Effects, Ensemble Choice and Force Influence in Dissipative Particle Dynamics Simulations

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2016)

Abstract

The influence of finite size effects, choice of statistical ensemble and contribution of the forces in numerical simulations using the dissipative particle dynamics (DPD) model are revisited here. Finite size effects in stress anisotropy, interfacial tension and dynamic viscosity are computed and found to be minimal with respect to other models. Additionally, the choice of ensemble is found to be of fundamental importance for the accurate calculation of properties such as the solvation pressure, especially for relatively small systems. Lastly, the contribution of the random, dissipative and conservative forces that make up the DPD model in the prediction of properties of simple liquids such as the pressure is studied as well. Some tricks of the trade are provided, which may be useful for those carrying out high-performance numerical simulations using the DPD model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon, Oxford (1987)

    MATH  Google Scholar 

  2. Hoogerbrugge, P.J., Koelman, J.M.V.A.: Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155–160 (1992)

    Article  Google Scholar 

  3. Español, P., Warren, P.: Statistical Mechanics of Dissipative Particle Dynamics. Europhys. Lett. 30, 191–196 (1995)

    Article  Google Scholar 

  4. Groot, R.D., Warren, P.B.: Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423–4435 (1997)

    Article  Google Scholar 

  5. Dinsmore, A.D., Warren, P.B., Poon, C.K., Yodh, A.G.: Fluid Solid transition on walls in binary hard sphere mixtures. Europhys. Lett. 40, 337–342 (1997)

    Article  Google Scholar 

  6. Mackie, A., Bonet Avalos, J., Navas, V.: Dissipative Particle Dynamics with energy conservation: Modeling of heat flow. Europhys. Lett. 40, 337–342 (1999)

    Google Scholar 

  7. Pastorino, C., Gama Goicochea, A.: Dissipative particle dynamics: a method to simulate soft matter systems in equilibrium and under flow. In: Klapp, J., Ruíz Chavarría, G., Medina Ovando, A., López Villa, A., Sigalotti, L. (eds.) Selected Topics of Computational and Experimental Fluid Mechanics. ESE, pp. 51–79. Springer, Cham (2015). doi:10.1007/978-3-319-11487-3_3

    Google Scholar 

  8. Moeendarbary, E., Ng, T.Y., Zangeneh, M.: Dissipative Particle Dynamics: Introduction, methodology and complex flui applications - a review. Int. J. App. Mech. 1, 737–763 (2009)

    Article  Google Scholar 

  9. Lu, Z.Y., Wang, Y.L.: An introduction to Dissipative Particle Dynamics. Methods Mol. Biol. 924, 617–633 (2013)

    Article  Google Scholar 

  10. Fuchslin, R.M., Fellermann, H., Ericksson, A., Ziock, H.J.: Coarse graining and scaling in Dissipative Particle Dynamics. J. Chem. Phys. 130(214102), 1–8 (2009)

    Google Scholar 

  11. Velázquez, M.E., Gama Goicochea, A., Gonzalez Melchor, M., Neria, M., Alejandre, J.: Finite Size effects in dissipative particle dynamics simulations. J. Chem. Phys. 124, 084104 (2006)

    Article  Google Scholar 

  12. Warren, P.B.: Vapor liquid coexistence in many body Dissipative Particle Dynamics. Phys. Rev. E 68, 066702 (2003)

    Article  Google Scholar 

  13. Fischer, M.E., Widom, B.: Decay of Correlations in Linear Systems. J. Chem. Phys. 50, 3756–3772 (1969)

    Article  Google Scholar 

  14. Gama Goicochea, A., Mayoral, E., Klapp, J., Pastorino, C.: Nanotribology of biopolymer brushes in aqueous solution using dissipative particle dynamics simulations: an application to PEG covered liposomes in a theta solvent. Soft Matter 10, 166 (2014)

    Article  Google Scholar 

  15. Makosco, C.: Rheology principles, measurements and applications. VCH J. Phys. Chem. Lett. 7, 1836–1844 (1994)

    Google Scholar 

  16. Derjaguin, B.V., Churaev, N.V.: In Fluid International Phenomena. Wiley, New York (1986)

    Google Scholar 

  17. Frenkel, D., Simt, B.: Understanding Molecular Simulation. Academic Press, UK (2016)

    Google Scholar 

  18. Gama Goicochea, A.: Adsorption and Disjoining Pressure Isotherms of Confined Polymers using Dissipative Particle Dynamics. Langmuir 23, 11656–11663 (2007)

    Article  Google Scholar 

  19. Balderas Altamirano, M.A., Gama Goicochea, A.: Comparison of mesoscopic solvation pressure at constant density and constant chemical potential. Polymer 52, 3846 (2011)

    Article  Google Scholar 

  20. McQuarrie DA, Statistical Mechanics (Harper & Row, New York)

    Google Scholar 

  21. Xiao, C., Rowlison, J.S.: The solvation pressure in a system of fixed density. Mol. Phys. 73, 937 (1991)

    Article  Google Scholar 

  22. Israelachvilli, J.N.: Molecular and Surfaces Forces. Academic Press, Netherlands (2011)

    Google Scholar 

  23. Gama Goicochea, A., Balderas Altamirano, M.A., Hernández, J.D., Pérez, E.: The role of the dissipative and random forces in the calculation of the pressure of simple fluids with dissipative particle dynamics. Comput. Phys. Commun. 188, 76–81 (2015)

    Article  Google Scholar 

  24. Goldstein, H.: Classical Mechanics. Addison Wesley, Nueva York (1980)

    MATH  Google Scholar 

Download references

Acknowledgments

MABA thanks PRODEP DSA/103.5/15/3894 and CA – Ingeniería de Procesos Químicos y Ambientales. MABA and AGG thank the Centro Nacional de Supercomputo (IPICYT) and the High Performance Computation Area of the Universidad de Sonora, for allocation of computer time; J Limón (IF UASLP) is acknowledged for technical support. AGG would like to thank JD Hernández Velázquez, J. Klapp, E. Mayoral and C. Pastorino for important discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Gama Goicochea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Balderas Altamirano, M.Á., Pérez, E., Gama Goicochea, A. (2017). On Finite Size Effects, Ensemble Choice and Force Influence in Dissipative Particle Dynamics Simulations. In: Barrios Hernández, C., Gitler, I., Klapp, J. (eds) High Performance Computing. CARLA 2016. Communications in Computer and Information Science, vol 697. Springer, Cham. https://doi.org/10.1007/978-3-319-57972-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57972-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57971-9

  • Online ISBN: 978-3-319-57972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics