Clustering-Based Online Player Modeling

  • Jason M. Bindewald
  • Gilbert L. PetersonEmail author
  • Michael E. Miller
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 705)


Being able to imitate individual players in a game can benefit game development by providing a means to create a variety of autonomous agents and aid understanding of which aspects of game states influence game-play. This paper presents a clustering and locally weighted regression method for modeling and imitating individual players. The algorithm first learns a generic player cluster model that is updated online to capture an individual’s game-play tendencies. The models can then be used to play the game or for analysis to identify how different players react to separate aspects of game states. The method is demonstrated on a tablet-based trajectory generation game called Space Navigator.


State Cluster Trajectory Generator Game State Cluster Population Individual Player 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Argall, B., Browning, B., Veloso, M.: Learning by demonstration with critique from a human teacher. In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, pp. 57–64. ACM (2007)Google Scholar
  2. 2.
    Bindewald, J.M., Miller, M.E., Peterson, G.L.: A function-to-task process model for adaptive automation system design. Int. J. Hum. Comput. Stud. 72(12), 822–834 (2014)CrossRefGoogle Scholar
  3. 3.
    Bindewald, J.M., Peterson, G.L., Miller, M.E.: Trajectory generation with player modeling. In: Barbosa, D., Milios, E. (eds.) CANADIAN AI 2015. LNCS (LNAI), vol. 9091, pp. 42–49. Springer, Cham (2015). doi: 10.1007/978-3-319-18356-5_4 Google Scholar
  4. 4.
    Firemint Party Ltd.: Flight control, December 2011.
  5. 5.
    Floyd, M.W., Esfandiari, B., Lam, K.: A case-based reasoning approach to imitating robocup players. In: FLAIRS Conference, pp. 251–256 (2008)Google Scholar
  6. 6.
    Gamez, D., Fountas, Z., Fidjeland, A.K.: A neurally controlled computer game avatar with human like behavior. IEEE Trans. Comput. Intell. AI Games 5(1), 1–14 (2013)CrossRefGoogle Scholar
  7. 7.
    Holmgård, C., Liapis, A., Togelius, J., Yannakakis, G.N.: Evolving personas for player decision modeling. In: 2014 IEEE Conference on Computational Intelligence and Games (CIG), pp. 1–8. IEEE (2014)Google Scholar
  8. 8.
    Holmgård, C., Liapis, A., Togelius, J., Yannakakis, G.N.: Generative agents for player decision modeling in games. Foundations of Digital Games (2014)Google Scholar
  9. 9.
    Huang, V., Huang, H., Thatipamala, S., Tomlin, C.J.: Contrails: crowd-sourced learning of human models in an aircraft landing game. In: Proceedings of the AIAA GNC Conference (2013)Google Scholar
  10. 10.
    Kemmerling, M., Ackermann, N., Preuss, M.: Making Diplomacy bots individual. In: Hingston, P. (ed.) Believable Bots, pp. 265–288. Springer, Heidelberg (2012)Google Scholar
  11. 11.
    Liapis, A., Holmgård, C., Yannakakis, G.N., Togelius, J.: Procedural personas as critics for dungeon generation. In: Mora, A.M., Squillero, G. (eds.) EvoApplications 2015. LNCS, vol. 9028, pp. 331–343. Springer, Cham (2015). doi: 10.1007/978-3-319-16549-3_27 Google Scholar
  12. 12.
    Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. VISAPP (1), 2 (2009)Google Scholar
  13. 13.
    Ontanón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., Preuss, M.: A survey of real-time strategy game AI research and competition in StarCraft. Comput. Intell. AI Games 5(4), 293–311 (2013)CrossRefGoogle Scholar
  14. 14.
    Schrum, J., Karpov, I.V., Miikkulainen, R.: Human-like combat behaviour via multiobjective neuroevolution. In: Hingston, P. (ed.) Believable Bots, pp. 119–150. Springer, Heidelberg (2012)Google Scholar
  15. 15.
    Smith, A.M., Lewis, C., Hullet, K., Sullivan, A.: An inclusive view of player modeling. In: The 6th International Conference on Foundations of Digital Games, pp. 301–303. ACM (2011)Google Scholar
  16. 16.
    Togelius, J., De Nardi, R., Lucas, S.M.: Making racing fun through player modeling and track evolution. In: Proceedings Optimizing Player Satisfaction in Computer and Physical Games, p. 61 (2006)Google Scholar
  17. 17.
    Ward, J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yu, H., Riedl, M.O.: Personalized interactive narratives via sequential recommendation of plot points. IEEE Trans. Comput. Intell. AI Games 6(2), 174–187 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG (outside the US) 2017

Authors and Affiliations

  • Jason M. Bindewald
    • 1
  • Gilbert L. Peterson
    • 1
    Email author
  • Michael E. Miller
    • 1
  1. 1.Air Force Institute of TechnologyWright-Patterson AFBUSA

Personalised recommendations