Skip to main content

Do Breast Cancer Patients Benefit from Surgery? Hypotheses, Mathematical Models and False Beliefs

  • Chapter
  • First Online:
Book cover Perioperative Inflammation as Triggering Origin of Metastasis Development

Abstract

Although much is known about the molecular biology and genomics of breast cancer at the subcellular level, clinical manifestations of the disease and its diagnosis, prognosis and treatment continue to pose major challenges. This chapter is an attempt at critical review and analysis of a few principal hypotheses about the natural history of invasive breast cancer and the effects of surgery. We address a fundamental question regarding the universality of benefits of surgery and whether it should be dropped for some categories of breast cancer patients. We present a mathematical model of metastasis that allows for evaluating the post-surgery dynamics of the metastatic cascade. We show that statistical inference from the results of clinical trials may lead to false knowledge and irreproducible results. Finally, we make a case for identification of the categories of breast cancer patients that could benefit from surgery through a model-based analysis of post-surgery metastatic relapse times. The mathematical model could also serve as an in silico surrogate for clinical trials comparing various breast cancer treatments with and without surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fisher B (1980) Laboratory and clinical research in breast cancer: a personal adventure. The David A. Karnofsky memorial lecture. Cancer Res 40:3863–3874

    CAS  PubMed  Google Scholar 

  2. Cooke R (2001) Dr. Folkman’s war: angiogenesis and the struggle to defeat cancer. Random House, New York

    Google Scholar 

  3. Folkman J (1974) Tumor angiogenesis factor. Cancer Res 34:2109–2113

    CAS  PubMed  Google Scholar 

  4. Moiseenko VM (2002) “Natural history” of breast cancer growth. Pract Oncol 3(1):6–14 (in Russian)

    Google Scholar 

  5. Holmgren K, O’Reilly MS, Folkman J (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1:149–153

    Article  CAS  PubMed  Google Scholar 

  6. Demicheli R, Retsky MW, Swartzendruber DE, Bonadonna G (1997) Proposal for a new model of breast cancer metastatic development. Ann Oncol 8:1075–1080

    Article  CAS  PubMed  Google Scholar 

  7. Fisher B (1999) From Halsted to prevention and beyond: advances in the management of breast cancer during the twentieth century. Eur J Cancer 35:1963–1973

    Article  CAS  PubMed  Google Scholar 

  8. Douglas JRS (1971) Significance of the size distribution of bloodborne metastases. Cancer 27:379–390

    Article  CAS  PubMed  Google Scholar 

  9. Cox B (1997) Variation in the effectiveness of breast screening by year of follow-up. JNCI Monographs 22:69–72

    Article  Google Scholar 

  10. Gøetsche P (2012) Mammography screening: truth, lies and controversy. Radcliffe Publishing, London

    Google Scholar 

  11. Baines CJ (2011) Rational and irrational issues in breast cancer screening. Cancers 3:252–266

    Google Scholar 

  12. Welch HG, Black WC (2010) Overdiagnosis in cancer. JNCI 102(9):605–613

    Article  PubMed  Google Scholar 

  13. Sachs RK, Heidenreich WF, Brenner DJ (1996) Dose timing in tumor radiotherapy: considerations of cell number stochasticity. Math Biosci 138:131–146

    Article  CAS  PubMed  Google Scholar 

  14. Fakir H, Hlatky L, Li H, Sachs R (2013) Repopulation of interacting tumor cells during fractionated radiotherapy: stochastic modeling of the tumor control probability. Med Phys 40(12):121716

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hanin L, Zaider M (2014) Optimal schedules of fractionated radiation therapy by way of the greedy principle: biologically-based adaptive boosting. Phys Med Biol 59:4085–4098

    Article  PubMed  Google Scholar 

  16. Poincaré H (1952) Science and hypothesis. Dover Publications, New York

    Google Scholar 

  17. Boyd W (1966) The spontaneous regression of cancer. Thomas, Springfield, IL

    Google Scholar 

  18. Everson TC, Cole WH (1966) Spontaneous regression of cancer. Saunders, Philadelphia, PA

    Google Scholar 

  19. Zahl P-H, Mæhlen J, Welch HG (2008) The natural history of invasive breast cancer detected by screening mammography. Arch Intern Med 168:2311–2316

    Article  PubMed  Google Scholar 

  20. Smithers DW (1967) Spontaneous regression of cancer. Ann R Coll Surg Engl 41(Suppl):160–162

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sonnenschein C, Soto AM (2000) Somatic mutation theory of carcinogenesis: why it should be dropped and replaced. Mol Carcinog 29:205–211

    Article  CAS  PubMed  Google Scholar 

  22. Soto AM, Sonnenschein C (2004) The somatic mutation theory of cancer: growing problems with the paradigm? BioEssays 26:1097–1107

    Article  CAS  PubMed  Google Scholar 

  23. Sonnenschein C, Soto AM (2008) Theories of carcinogenesis: an emerging perspective. Semin Cancer Biol 18:372–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Andersen J, Nielsen M, Jensen J (1985) Essential histological findings in the female breast at autopsy. In: Zander J, Baltzer J (eds) Early breast cancer. Berlin, Springer, pp 52–63

    Chapter  Google Scholar 

  25. Hanin L, Rose J (2016) Uncovering the natural history of cancer from post mortem cross-sectional diameters of hepatic metastases. Math Med Biol 33(4):397–416

    Google Scholar 

  26. Hanin L, Seidel K, Stoevesandt D (2016) A “universal” model of metastatic cancer, its parametric forms and their identification: what can be learned from site-specific volumes of metastases. J Math Biol 72(6):1633–1662

    Google Scholar 

  27. Ehrlich P (1906) Experimentelle Karzinomstudien an Mäusen. Arch Koiglichen Inst Exp Ther Frankfurt am Main 1:65–103

    Google Scholar 

  28. Bashford E, Murray J, Cramer W (1907) The natural and induced resistance of mice to the growth of cancer. Proc R Soc Lond 79:164–187

    Article  Google Scholar 

  29. Gorelik E (1983) Concomitant tumor immunity and resistance to a second tumor challenge. Adv Cancer Res 39:71–120

    Article  CAS  PubMed  Google Scholar 

  30. Demicheli R, Retsky M, Hrushesky WJ, Baum M, Gukas ID (2008) The effects of surgery on tumor growth: a century of investigations. Ann Oncol 19:1821–1828

    Article  CAS  PubMed  Google Scholar 

  31. Retsky M, Demicheli R, Hrushesky W, Baum M, Gukas I (2010) Surgery triggers outgrowth of latent distant disease in breast cancer: an inconvenient truth? Cancers 2:305–337

    Google Scholar 

  32. Peeters CFJM, de Waal RMW, Wobbes T, Westphal JR, Ruers TJM (2006) Outgrowth of human liver metastases after resection of the primary colorectal tumor: a shift in the balance between apoptosis and proliferation. Int J Cancer 119:1249–1253

    Article  CAS  PubMed  Google Scholar 

  33. Ang KK, Thames HD, Jones SD, Jiang G-L, Milas L, Peters LJ (1988) Proliferation kinetics of a murine fibrosarcoma during fractionated irradiation. Radiat Res 116:327–336

    Article  CAS  PubMed  Google Scholar 

  34. Dillekås H, Transeth M, Pilskog M, Assmus J, Straume O (2014) Differences in metastatic patterns in relation to time between primary surgery and first relapse from breast cancer suggests synchronized growth of dormant micrometastases. Breast Cancer Res Treat 146:627–636

    Article  PubMed  PubMed Central  Google Scholar 

  35. Georgiu GK, Igglezou M, Sainis I, Vareli K, Batsis H, Briasoulis E, Fatouros M (2013) Impact of breast cancer surgery on angiogenesis circulating biomarkers: a prospective longitudinal study. World J Surg Oncol 11:213

    Article  Google Scholar 

  36. Prehn RT (1993) Two competing influences that may explain concomitant tumor resistance. Cancer Res 53:3266–3269

    CAS  PubMed  Google Scholar 

  37. Maida V, Ennis M, Kuziemsky C, Corban J (2009) Wounds and survival in cancer patients. Eur J Cancer 45:3237–3244

    Article  PubMed  Google Scholar 

  38. Lanca T, Silva-Santos B (2012) The split nature of tumor-infiltrating leukocytes. Implications for cancer surveillance and immunotherapy. Oncoimmunology 1(5):717–725

    Article  PubMed  PubMed Central  Google Scholar 

  39. Forget P, Vandenhende J, Berliere M, Machiels JP, Nussbaum B, Legrand C, DeKock M (2010) Do intraoperative analgesics influence breast cancer recurrence after mastectomy? A retrospective analysis. Anesth Analg 110(6):1630–1635

    Article  CAS  PubMed  Google Scholar 

  40. Retsky M, Rogers R, Demicheli R, Hrushesky WJ, Gukas I, Vaidya JS, Baum M, Forget P, DeKock M, Pachmann K (2012) NSAID analgesic ketorolac used perioperatively may suppress early breast cancer relapse: particular relevance to triple negative subgroup. Breast Cancer Res Treat 134(2):881–888

    Google Scholar 

  41. Retsky M, Demicheli R, Hrushesky WJM, Forget P, DeKock M, Gukas I, Rogers R, Baum M, Pachmann K, Vaidya JS (2012) Promising development from translational or perhaps anti-translational research in breast cancer. Clin Transl Med 1:17

    Article  PubMed  PubMed Central  Google Scholar 

  42. Retsky M, Demicheli R, Hrushesky WJM, Forget P, DeKock M, Gukas I, Rogers RA, Baum M, Sukhatme V, Vaidya JS (2013) Reduction of breast cancer relapses with perioperative non-steroidal anti-inflammatory drugs: new findings and a review. Curr Med Chem 20(33):4163–4176

    Google Scholar 

  43. Demicheli R, Osaro E, Retsky M, Forget P, Vaidya JS, Bello SO (2016) Protocol for a randomised, multicentre, double blinded phase III study of perioperative ketorolac in women of African descent with operable breast cancer. Jacobs J Intern Medicine 2(1):017

    Google Scholar 

  44. Bloom H, Richardson W, Harries E (1962) Natural history of untreated breast cancer (1805–1933). British Med J 2:213–221

    Article  CAS  Google Scholar 

  45. Brinkley D, Haybittle J (1975) The curability of breast cancer. Lancet 2(7925):95–97

    Article  CAS  PubMed  Google Scholar 

  46. Karrison TG, Ferguson DJ, Meier P (1999) Dormancy of mammary carcinoma after mastectomy. J Natl Cancer Inst 91:80–85

    Article  CAS  PubMed  Google Scholar 

  47. Rutqvist L, Wallgren A (1985) Longterm survival of 458 young breast cancer patients. Cancer 55:658–665

    Article  CAS  PubMed  Google Scholar 

  48. Hanin LG, Rose J, Zaider M (2006) A stochastic model for the sizes of detectable metastases. J Theor Biol 243:407–417

    Article  PubMed  Google Scholar 

  49. Hanin LG (2008) Distribution of the sizes of metastases: mathematical and biomedical considerations. In: Tan WY, Hanin LG (eds) Handbook of cancer models with applications. World Scientific, Singapore, pp 141–169

    Google Scholar 

  50. Hanin L, Zaider M (2011) Effects of surgery and chemotherapy on metastatic progression of prostate cancer: evidence from the natural history of the disease reconstructed through mathematical modeling. Cancers 3:3632–3660

    Google Scholar 

  51. Hanin L, Pavlova L (2016) A quantitative insight into metastatic relapse of breast cancer. J Theor Biol 394:172–181

    Article  PubMed  Google Scholar 

  52. Hadfield G (1954) The dormant cancer cell. Br Med J 2:607–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sugarbaker EV, Ketcham AS, Cohen AM (1971) Studies of dormant tumor cells. Cancer 28:545–552

    Article  CAS  PubMed  Google Scholar 

  54. Meltzer A (1990) Dormancy and breast cancer. J Surg Oncol 43:181–188

    Article  CAS  PubMed  Google Scholar 

  55. Demicheli R (2001) Tumour dormancy: findings and hypotheses from clinical research on breast cancer. Semin Cancer Biol 11:297–306

    Article  CAS  PubMed  Google Scholar 

  56. Dick JE (2003) Breast cancer stem cells revealed. PNAS 100(7):3547–3549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. PNAS 100(7):3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kai K, Arima Y, Kamiya T, Saya H (2010) Breast cancer stem cells. Breast Cancer 17:80–85

    Article  PubMed  Google Scholar 

  59. Retsky M, Demicheli R (2014) Multimodal hazard rate for relapse in breast cancer: quality of data and calibration of computer simulation. Cancers 6:2343–2355

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Hanin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hanin, L. (2017). Do Breast Cancer Patients Benefit from Surgery? Hypotheses, Mathematical Models and False Beliefs. In: Retsky, M., Demicheli, R. (eds) Perioperative Inflammation as Triggering Origin of Metastasis Development. Springer, Cham. https://doi.org/10.1007/978-3-319-57943-6_7

Download citation

Publish with us

Policies and ethics